The present article delves into some symplectic features arising in basic knot theory. An interpretation of the writhing number of a knot (with reference to a plane projection thereof) is provided in terms of a phase function analogous to those encountered in geometrical optics, its variation upon switching a crossing being akin to the passage through a caustic, yielding a knot theoretical analogue of Maslov's theory, via classical fluidodynamical helicity. The Maslov cycle is given by knots having exactly one double point, among those having a fixed plane shadow and lying on a semi-cone issued therefrom, which turn out to build up a Lagrangian submanifold of Brylinski's symplectic manifold of (mildly) singular knots. A Morse family (generating function) for this submanifold is determined and can be taken to be the Abelian Chern–Simons action plus a source term (knot insertion) appearing in the Jones–Witten theory. The relevance of the Bohr–Sommerfeld conditions arising in geometric quantization are investigated and a relationship with the Gauss linking number integral formula is also established, together with a novel derivation of the so-called Feynman–Onsager quantization condition. Furthermore, an additional Chern–Simons interpretation of the writhe of a braid is discussed and interpreted symplectically, also making contact with the Goldin–Menikoff–Sharp approach to vortices and anyons. Finally, a geometrical setting for the ground state wave functions arising in the theory of the Fractional Quantum Hall Effect is established.
We study plane algebraic curves defined over a field k of arbitrary characteristic that are ramified coverings of the projective line P 1 (k) branched over a given configuration of distinct points by their ramification type specified by a partition of d the degree of the covering. We enumerate them by using the combinatorics of partitions and its connection to the representation theory of the symmetric group.
We studied a particular class of well known error-correcting codes known as Reed–Solomon codes. We constructed RS codes as algebraic-geometric codes from the normal rational curve. This approach allowed us to study some algebraic representations of RS codes through the study of the general linear group GL(n,q). We characterized the coefficients that appear in the decompostion of an irreducible representation of the special linear group in terms of Gromov–Witten invariants of the Hilbert scheme of points in the plane. In addition, we classified all the algebraic codes defined over the normal rational curve, thereby providing an algorithm to compute a set of generators of the ideal associated with any algebraic code constructed on the rational normal curve (NRC) over an extension Fqn of Fq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.