Self-assessment methods are broadly employed in emotion research for the collection of subjective affective ratings. The Self-Assessment Manikin (SAM), a pictorial scale developed in the eighties for the measurement of pleasure, arousal, and dominance, is still among the most popular self-reporting tools, despite having been conceived upon design principles which are today obsolete. By leveraging on state-of-the-art user interfaces and metacommunicative pictorial representations, we developed the Affective Slider (AS), a digital self-reporting tool composed of two slider controls for the quick assessment of pleasure and arousal. To empirically validate the AS, we conducted a systematic comparison between AS and SAM in a task involving the emotional assessment of a series of images taken from the International Affective Picture System (IAPS), a database composed of pictures representing a wide range of semantic categories often used as a benchmark in psychological studies. Our results show that the AS is equivalent to SAM in the self-assessment of pleasure and arousal, with two added advantages: the AS does not require written instructions and it can be easily reproduced in latest-generation digital devices, including smartphones and tablets. Moreover, we compared new and normative IAPS ratings and found a general drop in reported arousal of pictorial stimuli. Not only do our results demonstrate that legacy scales for the self-report of affect can be replaced with new measurement tools developed in accordance to modern design principles, but also that standardized sets of stimuli which are widely adopted in research on human emotion are not as effective as they were in the past due to a general desensitization towards highly arousing content.
BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.
Compared to standard laboratory protocols, the measurement of psychophysiological signals in real world experiments poses technical and methodological challenges due to external factors that cannot be directly controlled. To address this problem, we propose a hybrid approach based on an immersive and human accessible space called the eXperience Induction Machine (XIM), that incorporates the advantages of a laboratory within a life-like setting. The XIM integrates unobtrusive wearable sensors for the acquisition of psychophysiological signals suitable for ambulatory emotion research. In this paper, we present results from two different studies conducted to validate the XIM as a general-purpose sensing infrastructure for the study of human affective states under ecologically valid conditions. In the first investigation, we recorded and classified signals from subjects exposed to pictorial stimuli corresponding to a range of arousal levels, while they were free to walk and gesticulate. In the second study, we designed an experiment that follows the classical conditioning paradigm, a well-known procedure in the behavioral sciences, with the additional feature that participants were free to move in the physical space, as opposed to similar studies measuring physiological signals in constrained laboratory settings. Our results indicate that, by using our sensing infrastructure, it is indeed possible to infer human event-elicited affective states through measurements of psychophysiological signals under ecological conditions.
The quantity of information we are producing is soaring: this generates large amounts of data that are frequently left unexplored. Novel tools are needed to stem this "data deluge". We developed a system that enhances the understanding of large datasets through embodied navigation and natural gestures using the immersive mixed reality space called "eXperience Induction Machine" (XIM). One of the applications of our system is in the exploration of the human brain connectome: the network of nodes and connections that defines the information flow in the brain. We exposed participants to a connectome dataset using either our system or a state of the art software for visualization and analysis of connectomic data. We measured their understanding and visual memory of the connectome structure. Our results showed that participants retained more information about the structure of the network when using our system. Overall, our system constitutes a novel approach in the exploration and understanding of large network datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.