The importance of the microbiome for bovine udder health is not well explored and most of the knowledge originates from research on mastitis. Better understanding of the microbial diversity inside the healthy udder of lactating cows might help to reduce mastitis, use of antibiotics and improve animal welfare. In this study, we investigated the microbial diversity of over 400 quarter milk samples from 60 cows sampled from two farms and on two different occasions during the same lactation period. Microbiota analysis was performed using amplicon sequencing of the 16S rRNA gene and over 1000 isolates were identified using MALDI-TOF MS. We detected a high abundance of two bacterial families, Corynebacteriaceae and Staphylococcaceae, which accounted for almost 50% of the udder microbiota of healthy cows and were detected in all the cow udders and in more than 98% of quarter milk samples. A strong negative correlation between these bacterial families was detected indicating a possible competition. The overall composition of the udder microbiota was highly diverse and significantly different between cows and between quarter milk samples from the same cow. Furthermore, we introduced a novel definition of a dysbiotic quarter at individual cow level, by analyzing the milk microbiota, and a high frequency of dysbiotic quarter samples were detected distributed among the farms and the samples. These results emphasize the importance of deepening the studies of the bovine udder microbiome to elucidate its role in udder health.
Introduction of microbial contaminations in the dairy value chain starts at the farm level and the initial microbial composition may severely affect the production of high-quality dairy products. Therefore, understanding the farm-to-farm variation and longitudinal shifts in the composition of the bulk tank milk microbiota is fundamental to increase the quality and reduce the spoilage and waste of milk and dairy products. In this study, we performed a double experiment to study long- and short-term longitudinal shifts in microbial composition using 16S rRNA gene amplicon sequencing. We analyzed milk from 37 farms, that had also been investigated two years earlier, to understand the stability and overall microbial changes over a longer time span. In addition, we sampled bulk tank milk from five farms every 1–2 weeks for up to 7 months to observe short-term changes in microbial composition. We demonstrated that a persistent and farm-specific microbiota is found in bulk tank milk and that changes in composition within the same farm are mostly driven by bacterial genera associated with mastitis (e.g., Staphylococcus and Streptococcus). On a long-term, we detected that major shift in milk microbiota were not correlated with farm settings, such as milking system, number of cows and quality of the milk but other factors, such as weather and feeding, may have had a greater impact on the main shifts in composition of the bulk tank milk microbiota. Our results provide new information regarding the ecology of raw milk microbiota at the farm level.
Background In recent years, the number of studies concerning microbiota of the intramammary environment has increased rapidly due to the development of high-throughput sequencing technologies that allow mapping of microbiota without culturing. This has revealed that an environment previously thought to be sterile in fact harbours a microbial community. Since this discovery, many studies have investigated the microbiota of different parts of the udder in various conditions. However, few studies have followed the changes that occur in the udder microbiota over time. In this study, the temporal dynamics of the udder microbiota of 10 cows, five with a low somatic cell count (SCC, SCC < 100,000 cells/mL) and five with a high SCC (SCC > 100,000 cells/mL), were followed over 5 months to gather insights into this knowledge gap. Results Analysis of the temporal changes in the microbial composition of milk from udders with a low SCC revealed a dynamic and diverse microbiota. When an imbalance due to one dominating genus was recorded, the dominant genus quickly vanished, and the high diversity was restored. The genera dominating in the samples with a high SCC remained the dominant genera throughout the whole sampling period. These cows generally displayed a heightened SCC or an intramammary infection in at least one quarter though-out the sampling period. Conclusion Our results show that the bovine udder has a diverse microbiota, and that the composition and diversity of this community affects udder health with regards to SCC. Understanding what influences the composition and stability of this community has important implications for the understanding, control, and treatment of mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.