Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.
The Internet of Things (IoT) is, at this moment, one of the most promising technologies that has arisen for decades. Wireless Sensor Networks (WSNs) are one of the main pillars for many IoT applications, insofar as they require to obtain context-awareness information. The bibliography shows many difficulties in their real implementation that have prevented its massive deployment. Additionally, in IoT environments where data producers and data consumers are not directly related, compatibility and certification issues become fundamental. Both problems would profit from accurate knowledge of the internal behavior of WSNs that must be obtained by the utilization of appropriate tools. There are many ad-hoc proposals with no common structure or methodology, and intended to monitor a particular WSN. To overcome this problem, this paper proposes a structured three-layer reference model for WSN Monitoring Platforms (WSN-MP), which offers a standard environment for the design of new monitoring platforms to debug, verify and certify a WSN’s behavior and performance, and applicable to every WSN. This model also allows the comparative analysis of the current proposals for monitoring the operation of WSNs. Following this methodology, it is possible to achieve a standardization of WSN-MP, promoting new research areas in order to solve the problems of each layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.