The experimental determination of the scaling of the superconducting critical temperature (T-c) vs the Fermi temperature (T-f) of the holes in the boron sigma subband is presented. The Fermi level has been tuned near the "shape resonance," i.e., the two- to three-dimensional crossover of the Fermi surface of the boron sigma subband by changing the Al/Mg content in Al1-xMgxB2. The product k(f)xi(0) of the Fermi wave vector (k(f)) times the superconducting Pippard coherence length (xi(0)), that is a measure of the pairing strength, remains constant, k(f)xi(0)=90 for x>0.66. This high-T-c phase occurs in the boron superlattice under a tensile microstrain in the range 3%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.