The orofacial region is a major focus of chronic neuropathic pain conditions characterized by primary hyperalgesia at the site of injury and secondary hyperalgesia outside the injured zone. We have used a rat model of injury to the maxillary branch (V2) of the trigeminal nerve to produce constant and long-lasting primary hyperalgesia in the V2 territory and secondary hyperalgesia in territories innervated by the mandibular branch (V3). Our findings indicate that the induction of primary and secondary hyperalgesia depended on peripheral input from the injured nerve. In contrast, the maintenance of secondary hyperalgesia depended on central mechanisms. The centralization of the secondary hyperalgesia involved descending 5-HT drive from the rostral ventromedial medulla (RVM) and the contribution of 5-HT3 receptors in the trigeminal nucleus caudalis (Vc), the homolog of the spinal dorsal horn. Electrophysiological studies further indicate that after nerve injury spontaneous responses and enhanced post-stimulus discharges in Vc nociresponsive neurons were time-dependent on descending 5-HT drive and peripheral input. The induction phase of secondary hyperalgesia involved central sensitization mechanisms in Vc neurons that were dependent on peripheral input whereas the maintenance phase of secondary hyperalgesia involved central sensitization in Vc neurons conducted by a delayed descending 5-HT drive and a persistence of peripheral inputs. Our results are the first to show that the maintenance of secondary hyperalgesia and underlying central sensitization associated with persistent pain depend on a transition to supraspinal mechanisms involving the serotonin system in RVM-dorsal horn circuits.
The parabrachial (PB) complex mediates both ascending nociceptive signaling and descending pain modulatory information in the affective/emotional pain pathway. We hypothesized that PB hyperactivity influences chronic pain behavior after trigeminal nerve injury in rats. Following induction of neuropathic pain using the chronic constriction injury of the infraorbital nerve (CCI-ION) model, rats displayed spontaneous markers of pain and mechanical hyperalgesia extending beyond the receptive field of the injured nerve. PB neurons recorded from rats with CCI-ION displayed amplified activity, manifesting as significantly longer responses to sensory stimuli, compared to shams. These findings suggest that chronic neuropathic pain involves PB hyperactivity.
Pain perception is strongly influenced by descending pathways from "higher" brain centers that regulate the activity of spinal circuits. In addition to the extensively studied descending system originating from the medulla, the neocortex provides dense anatomical projections that directly target neurons in the spinal cord and the spinal trigeminal nucleus caudalis (SpVc). Evidence exists that these corticotrigeminal pathways may modulate the processing of nociceptive inputs by SpVc, and regulate pain perception. We demonstrate here, with anatomical and optogenetic methods, and using both rats and mice (of both sexes), that corticotrigeminal axons densely innervate SpVc, where they target and directly activate inhibitory and excitatory neurons. Electrophysiological recordings reveal that stimulation of primary somatosensory cortex potently suppresses SpVc responses to noxious stimuli and produces behavioral hypoalgesia. These findings demonstrate that the corticotrigeminal pathway is a potent modulator of nociception and a potential target for interventions to alleviate chronic pain. Many chronic pain conditions are resistant to conventional therapy. Promising new approaches to pain management capitalize on the brain's own mechanisms for controlling pain perception. Here we demonstrate that cortical neurons directly innervate the brainstem to drive feedforward inhibition of nociceptive neurons. This corticotrigeminal pathway suppresses the activity of these neurons and produces analgesia. This corticotrigeminal pathway may constitute a therapeutic target for chronic pain.
Prominent motor deficits (e.g., chorea) that typify Huntington's disease (HD) arise following a prolonged prodromal stage characterized by psychiatric disturbances. Apathy, a disorder of motivation characterized by diminished goal-directed behavior, is one of the earliest and most common psychiatric symptoms in HD, but the underlying neurobiology is unclear and treatment options are limited. Alterations in the endocannabinoid (eCB) and dopamine systems represent prominent pathophysiological markers in HD that-similar to motivational deficits-present early and decline across disease progression. Whether changes in dopamine and eCB systems are associated with specific behavioral impairments in HD and whether these deficits are amenable to viable treatments is unknown. Here, we show that dopaminergic encoding of effortful drive progressively declines with age in an HD mouse model, and is restored by elevating tissue levels of the eCB 2-arachidonoylglycerol (2-AG) through targeted inhibition of its enzymatic degradation. This work supports aberrant dopaminergic encoding of reward as a neurobiological correlate of apathy in HD, and indicates that cannabinoid receptor-based therapies may benefit neuropsychiatric care for HD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.