To evaluate the frequency of distant metastases (DM) and to determine the ability of certain clinical and pathologic factors to predict the development of distant metastases. Design: Retrospective analysis. Setting: University hospital. Patients: A total of 1972 patients with oral, oropharyngeal, hypopharyngeal, and laryngeal squamous cell carcinomas who were treated from 1981 to 1998 and who were not diagnosed as having DM at the time of initial treatment. Main Outcome Measures: We evaluated the frequency of DM and the influence of different variables in their appearance. Results: A total of 181 patients (9.2%) (95% confidence interval, 7.9%-10.5%) developed DM. Younger age (Ͻ45 years), hypopharyngeal localization, an advanced T stage and/or N stage tumor according to the TNM staging system, high histologic grade, and locoregional control were found to be significantly associated with the risk of DM at both univariate and multivariate analyses. Conclusions: The incidence of DM in subjects with head and neck squamous cell carcinoma is relatively low. The risk of DM is influenced by age, site of primary cancer, local and/or regional extension, grading, and achievement of locoregional control.
The regulation of the cytosolic free Ca2+ concentration ([Ca2+]i) was investigated by microfluorimetry in single cerebellar granule neurons exposed to various treatments (high K+, glutamate, or acetylcholine) and drugs. The responses to the treatments developed asynchronously during cell culture, with high K+ and glutamate reaching their maxima at 6 and 7 days in vitro and acetylcholine at 9 days in vitro. The biphasic [Ca2+]i transients induced by high K+ (an initial peak, followed by a plateau 30-40% of the peak, both sustained by dihydropyridine-sensitive voltage-gated Ca2+ channels) were dissipated by washing with fresh medium or, more rapidly, by addition of excess EGTA (t1/2 = 11 +/- 2 and 3 +/- 0.6 s, respectively). Compared to those induced by high K+, the [Ca2+]i transients induced by glutamate administered in Mg2(+)-free medium were much more variable. An initial peak, sustained by voltage-gated Ca2+ channels, was visible in only approximately 50% of the cells and disappeared when multiple glutamate pulses were administered. In the rest of the population, the transients were monophasic, with persistent plateaus sustained only in part (30-40%) by voltage-gated Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)
Cultures of cerebellar cortex cells were exposed to the HIV-1 envelope glycoprotein, gp120, and investigated for cytosolic Ca2+ ion concentration ([Ca2+]i) changes by the fura-2 ratio videoimaging technique while bathed in complete, Na(+)-free or Mg(2+)-free Krebs-Ringer media. At the end of the [Ca2+]i experiments the cells were fixed and immunoidentified through the revelation of markers specific for neurons (microtubule associated protein-2), type-2 (A2B5) or all (glial fibrillary acidic protein) astrocytes, oligodendrocytes (galactocerebroside) or microglia (F4/80 antibody). In complete medium, rapid biphasic (spike-plateau) responses induced by gp120 (0.1-1 nM) were observed in a subpopulation of type-2 astrocytes. In addition, slow but progressive responses were observed in other type-2 cells and oligodendrocytes, whereas type-1 astrocytes showed small responses, if any, and granule neurons did not respond at all. Use of Na(+)-free medium (a condition that blocked another gp120-induced response, cytosolic alkalinization) resulted in an increase in [Ca2+]i response that was appreciable not only in type-2 but also in most type-1 astrocytes, possibly because of the inhibition of the Na+/Ca2+ exchanger and the ensuing decrease in Ca2+ extrusion. Granule neurons, including those in direct contact with responsive astrocytes, remained unresponsive, even when the experiments were carried out in Mg(2+)-free medium supplemented with glycine, a condition that favors activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
The various types of cells present in cultures prepared from the postnatal rat cerebellum, identified by their gross morphology and immunocytochemistry, were loaded with the specific dye fura-2 and analysed individually for [Ca2+]i changes induced by the HIV-1 envelope glycoprotein gp120 and a variety of other treatments. In granule neurons [Ca2+]i increases were induced by high KCl and glutamate (mainly through the NMDA receptor) while in type-1 astrocytes this effect was observed after serotonin, carbachol and also quisqualate. In contrast, administration of gp120 was always without effect in these cells. Type-2 astrocytes (an arborized cell type responsive to agonists targeted to the glutamatergic AMPA and cholinergic receptors) were also most often unresponsive to the viral glycoprotein. However, among the cells exhibiting the arborized phenotype, a subpopulation (approximately 13%) responded to gp120 with conspicuous [Ca2+]i increases sustained by both release from intracellular stores and influx across the plasma membrane. These responses to the viral protein did not involve activation of either voltage-gated Ca2+ channels or glutamatergic receptors. Although not yet conclusively identified by specific cytochemical markers, the gp120-responsive cells resemble type-2 astrocytes and differ from neurons and type-1 astrocytes both in gross phenotype and in a number of receptor/channel properties: positivity to AMPA and cholinergic agonists; negativity to NMDA, serotonin and high KCl. From these results it is concluded that a subpopulation of glial cells is affected by gp120. The role of these cells in HIV brain infection and damage requires further studies to be precisely established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.