Transcription factors (TFs) exert their regulatory action by binding to DNA with specific sequence preferences. However, different TFs can partially share their binding sequences due to their common evolutionary origin. This “redundancy” of binding defines a way of organizing TFs in “motif families” by grouping TFs with similar binding preferences. Since these ultimately define the TF target genes, the motif family organization entails information about the structure of transcriptional regulation as it has been shaped by evolution. Focusing on the human TF repertoire, we show that a one-parameter evolutionary model of the Birth-Death-Innovation type can explain the TF empirical repartition in motif families, and allows to highlight the relevant evolutionary forces at the origin of this organization. Moreover, the model allows to pinpoint few deviations from the neutral scenario it assumes: three over-expanded families (including HOX and FOX genes), a set of “singleton” TFs for which duplication seems to be selected against, and a higher-than-average rate of diversification of the binding preferences of TFs with a Zinc Finger DNA binding domain. Finally, a comparison of the TF motif family organization in different eukaryotic species suggests an increase of redundancy of binding with organism complexity.
Zipf's law is a hallmark of several complex systems with a modular structure, such as books composed by words or genomes composed by genes. In these component systems, Zipf's law describes the empirical power law distribution of component frequencies. Stochastic processes based on a sample-space-reducing (SSR) mechanism, in which the number of accessible states reduces as the system evolves, have been recently proposed as a simple explanation for the ubiquitous emergence of this law. However, many complex component systems are characterized by other statistical patterns beyond Zipf's law, such as a sublinear growth of the component vocabulary with the system size, known as Heap's law, and a specific statistics of shared components. This work shows, with analytical calculations and simulations, that these statistical properties can emerge jointly from a SSR mechanism, thus making it an appropriate parameter-poor representation for component systems. Several alternative (and equally simple) models, for example based on the preferential attachment mechanism, can also reproduce Heaps' and Zipf's laws, suggesting that additional statistical properties should be taken into account to select the most-likely generative process for a specific system. Along this line, we will show that the temporal component distribution predicted by the SSR model is markedly different from the one emerging from the popular rich-gets-richer mechanism. A comparison with empirical data from natural language indicates that the SSR process can be chosen as a better candidate model for text generation based on this statistical property. Finally, a limitation of the SSR model in reproducing the empirical "burstiness" of word appearances in texts will be pointed out, thus indicating a possible direction for extensions of the basic SSR process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.