Electrification of mobility is paving the way in decreasing emissions from the transport sector; nevertheless, to achieve a more sustainable and inclusive transport system, effective and long-term planning of electric vehicles charging infrastructure will be crucial. Developing an infrastructure that supports the substitution of the internal combustion engine and societal needs is no easy feat; different modes of transport and networks require specific analyses to match the requirements of the users and the capabilities of the power grid. In order to outline best practices and guidelines for a cost-effective and holistic charging infrastructure planning process, the authors have evaluated all the aspects and factors along the charging infrastructure planning cycle, analysing different methodological approaches from scientific literature over the last few years. The review starts with target identification (including transport networks, modes of transport, charging technologies implemented, and candidate sites), second, the data acquisition process (detailing data types sources and data processing), and finally, modelling, allocation, and sizing methodologies. The investigation results in a decision support tool to plan high-power charging infrastructure for electric vehicles, taking into account the interests of all the stakeholders involved in the infrastructure investment and the mobility value chain (distributed system operators, final users, and service providers).
Full electrification of the transport sector is a necessity to combat climate change and a pressing societal issue: climate agreements require a fuel shift of all the modes of transport, but while uptake of passenger electric vehicles is increasing, long haul trucks rely almost completely on fossil fuels. Providing highways with proper charging infrastructure for future electric mobility demand is a problem that is not fully investigated in literature: in fact, previous work has not addressed grid planning and infrastructure design for both passenger vehicles and trucks on highways. In this work, the authors develop a methodology to design the electrical infrastructure that supplies static and dynamic charging for both modes of transport. An algorithm is developed that selects substations for the partial electrification of a highway and, finally, the design of the electrical infrastructure to be implemented is produced and described, assessing conductors and substations sizing, in order to respect voltage regulations. The system topology of a real highway (E18 in Norway) and its traffic demand is analyzed, together with medium-voltage substations present in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.