-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca 2ϩ with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca 2ϩ channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca 2ϩ and SLO3 for K ϩ , which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.
a b s t r a c tHere we show a unique example of male infertility conferred by a gene knockout of the spermspecific, pH-dependent SLO3 potassium channel. In striking contrast to wild-type sperm which undergo membrane hyperpolarization during capacitation, we found that SLO3 mutant sperm undergo membrane depolarization. Several defects in SLO3 mutant sperm are evident under capacitating conditions, including impaired motility, a bent ''hairpin" shape, and failure to undergo the acrosome reaction (AR). The failure of AR is rescued by valinomycin which hyperpolarizes mutant sperm. Thus SLO3 is the principal potassium channel responsible for capacitation-induced hyperpolarization, and membrane hyperpolarization is crucial to the AR.Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Fertilization is a matter of life or death. In animals of sexual reproduction, the appropriate communication between mature and competent male and female gametes determines the generation of a new individual. Ion channels are key elements in the dialogue between sperm, its environment, and the egg. Components from the outer layer of the egg induce ion permeability changes in sperm that regulate sperm motility, chemotaxis, and the acrosome reaction. Sperm are tiny differentiated terminal cells unable to synthesize protein and difficult to study electrophysiologically. Thus understanding how sperm ion channels participate in fertilization requires combining planar bilayer techniques, in vivo measurements of membrane potential, intracellular Ca2+ and intracellular pH using fluorescent probes, patch-clamp recordings, and molecular cloning and heterologous expression. Spermatogenic cells are larger than sperm and synthesize the ion channels that will end up in mature sperm. Correlating the presence and cellular distribution of various ion channels with their functional status at different stages of spermatogenesis is contributing to understand their participation in differentiation and in sperm physiology. The multi-faceted approach being used to unravel sperm ion channel function and regulation is yielding valuable information about the finely orchestrated events that lead to sperm activation, induction of the acrosome reaction, and in the end to the miracle of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.