clinicaltrials. gov (TONADO 1 and 2: NCT01431274, NCT01431287; DYNAGITO: NCT02296138).
BackgroundThe DYNAGITO study was a Phase IIIb, randomized, double-blind, multicenter, active-controlled, parallel-group, 52-week study designed to determine the efficacy and safety of tiotropium and olodaterol combination therapy (TIO+OLO 5/5 μg) versus tiotropium monotherapy (TIO 5 μg) for reducing moderate-to-severe exacerbations of COPD. This is a prespecified analysis of the DYNAGITO data in Japanese patients.Patients and methodsEnrolled patients had a diagnosis of COPD with at least one moderate-to-severe exacerbation in the previous 12 months. Of the total 7,880 treated patients in the DYNAGITO study, 461 (TIO+OLO 5/5 μg: n=226, TIO 5 μg: n=235) were Japanese. The primary endpoint was the annualized rate of moderate-to-severe COPD exacerbations. The key secondary endpoint was the time to first moderate-to-severe COPD exacerbation, and other secondary endpoints included the annualized rate of exacerbations leading to hospitalization, time to first COPD exacerbation leading to hospitalization, and all-cause mortality. Safety data were analyzed descriptively.ResultsCombination therapy with TIO+OLO resulted in a 29% lower rate of moderate-to-severe COPD exacerbations relative to TIO monotherapy (rate ratio 0.71; 99% CI: 0.46, 1.10; p=0.0434). The risk of a first moderate-to-severe COPD exacerbation was 19% lower with TIO+OLO combination therapy than with TIO monotherapy (HR 0.81; 99% CI: 0.57, 1.17; p=0.1379), although this difference was not statistically significant. The annualized rate of COPD exacerbations requiring hospitalization was 14% lower in the TIO+OLO arm than in the TIO arm (rate ratio 0.86; 95% CI: 0.52, 1.42; p=0.5654). The adverse event incidence was balanced between treatment arms.ConclusionIn a prespecified subgroup analysis of Japanese patients in the DYNAGITO study, combination therapy with TIO+OLO was more effective than TIO in reducing exacerbations. Both treatments were well tolerated.
Background Chronic obstructive pulmonary disease (COPD) is characterised by progressive airflow limitation and chronic inflammation. Predicting exacerbations of COPD, which contribute to disease progression, is important to guide preventative treatment and improve outcomes. Blood eosinophils are a biomarker for patient responsiveness to inhaled corticosteroids (ICS); however, their effectiveness as a predictive biomarker for COPD exacerbations is unclear. Methods This post hoc analysis pooled data from 11 Boehringer Ingelheim-sponsored Phase III and IV randomised COPD studies with similar methodologies. Exacerbation data were collected from these studies, excluding patients from the ICS withdrawal arm of the WISDOM® study. Patients were grouped according to their baseline blood eosinophil count, baseline ICS use and number of exacerbations in the year prior to each study. Results Exacerbation rate data and baseline eosinophil count were available for 22,125 patients; 45.6% presented with a baseline blood eosinophil count of ≤ 150 cells/μL, 34.3% with 150–300 cells/μL and 20.1% with > 300 cells/μL. The lowest exacerbation rates were observed in patients with ≤ 150 cells/μL, with small increases in exacerbation rate observed with increasing eosinophil count. When stratified by exacerbation history, the annual rate of exacerbations for patients with 0 exacerbations in the previous year increased in line with increasing eosinophil counts (0.38 for ≤ 150 cells/μL, 0.39 for 150–300 cells/μL and 0.44 for > 300 cells/μL respectively). A similar trend was identified for patients with one exacerbation in the previous year, 0.62, 0.66 and 0.67 respectively. For patients with ≥ 2 exacerbations, exacerbation rates fluctuated between 1.02 (≤ 150 cells/μL) to 1.10 (150–300 cells/μL) and 1.07 (> 300 cells/μL). Higher exacerbation rates were noted in patients treated with ICS at baseline (range 0.75 to 0.82 with increasing eosinophil count) compared with patients not on ICS (range 0.45 to 0.49). Conclusion We found no clinically important relationship between baseline blood eosinophil count and exacerbation rate. Hence, the current analysis does not support the use of blood eosinophils to predict exacerbation risk; however, previous exacerbation history was found to be a more reliable predictor of future exacerbations. Trial registration ClinicalTrials.gov Identifiers: NCT00168844, NCT00168831, NCT00387088, NCT00782210, NCT00782509, NCT00793624, NCT00796653, NCT01431274, NCT01431287, NCT02296138 and NCT00975195. Graphical abstract
The study aimed to determine the associations of Peak Inspiratory Flow (PIF), inhalation technique and adherence with health status and exacerbations in participants with COPD using DPI maintenance therapy. This cross-sectional multi-country observational real-world study included COPD participants aged ≥40 years using a DPI for maintenance therapy. PIF was measured three times with the In-Check DIAL G16: (1) typical PIF at resistance of participant’s inhaler, (2) maximal PIF at resistance of participant’s inhaler, (3) maximal PIF at low resistance. Suboptimal PIF (sPIF) was defined as PIF lower than required for the device. Participants completed questionnaires on health status (Clinical COPD Questionnaire (CCQ)), adherence (Test of Adherence to Inhalers (TAI)) and exacerbations. Inhalation technique was assessed by standardised evaluation of video recordings. Complete data were available from 1434 participants (50.1% female, mean age 69.2 years). GOLD stage was available for 801 participants: GOLD stage I (23.6%), II (54.9%), III (17.4%) and IV (4.1%)). Of all participants, 29% had a sPIF, and 16% were shown able to generate an optimal PIF but failed to do so. sPIF was significantly associated with worse health status (0.226 (95% CI 0.107–0.346), worse units on CCQ; p = 0.001). The errors ‘teeth and lips sealed around mouthpiece’, ‘breathe in’, and ‘breathe out calmly after inhalation’ were related to health status. Adherence was not associated with health status. After correcting for multiple testing, no significant association was found with moderate or severe exacerbations in the last 12 months. To conclude, sPIF is associated with poorer health status. This study demonstrates the importance of PIF assessment in DPI inhalation therapy. Healthcare professionals should consider selecting appropriate inhalers in cases of sPIF.
Introduction: Dry powder inhalers (DPIs), a commonly prescribed inhaler type for respiratory diseases, require patients to generate sufficient peak inspiratory flow (PIF) to ensure optimal drug delivery to the airways. Effectiveness of therapy also requires a good inhalation technique and adequate medication adherence.For patients with chronic obstructive pulmonary disease (COPD), recent studies conducted in tertiary care suggest that DPI users with suboptimal PIF have poorer COPD-related health status and increased exacerbation risk versus those with optimal PIF. The PIFotal study will investigate the impact of PIF, inhalation technique and medication adherence on patient-reported outcomes in patients with COPD in primary care using a DPI for their maintenance therapy. Methods and Analysis: This cross-sectional observational study will assess 1200 patients
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.