This paper presents a rational framework for the quantitative assessment of life-cycle risk of bridges within a transportation network. Bridge vulnerability is evaluated with respect to seismic and abnormal traffic hazards. The effects induced by seismic hazard are investigated by means of fragility analysis. Random earthquakes are generated using Latin Hypercube sampling technique, and probabilities of exceeding specific structural damage states are computed for each specific seismic scenario. Traffic hazard is assessed considering Weibull distributed time-to-failure of the bridge superstructure. Epistemic and aleatory uncertainties are accounted for in order to provide a rational assessment of life-cycle risk. Consequence analysis includes different levels of bridge serviceability (fully serviceable, partly serviceable, closed, and collapsed), and monetary values are used to evaluate direct and indirect consequences. Seismic risk, traffic-induced risk, and total risk are evaluated for a group of existing bridges located north of the San Diego metropolitan area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.