Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.
Mitochondrial involvement has not been identified in the programmed cell death (PCD) of leaf senescence which suggests that processes such as those involving reactive oxygen species (ROS) are controlled by chloroplasts. We report that transgenic tobacco (DndhF), with the plastid ndhF gene knocked-out, shows low levels of the plastid Ndh complex, homologous to mitochondrial complex I, and more than a 30-day-delay in leaf senescence with respect to wt. The comparison of activities and protein levels and analyses of genetic and phenotypic traits of wtxDndhF crosses indicate that regulatory roles of mitochondria in animal PCD are assumed by chloroplasts in leaf senescence. The Ndh complex would increase the reduction level of electron transporters and the generation of ROS. Chloroplastic control of leaf senescence provides a nonclassical model of PCD and reveals an unexpected role of the plastid ndh genes that are present in most higher plants.
The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (F'(o)) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q (E)), whereas after fast dehydration it was photoinhibition (q (I)). Although q (E) seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.