Today, failure modes characterization and early detection is a key issue in complex assets. This is due to the negative impact of corrective operations and the conservative strategies usually put in practice, focused on preventive maintenance. In this paper anomaly detection issue is addressed in new monitoring sensor data by characterizing and modeling operational behaviors. The learning framework is performed on the basis of a machine learning approach that combines constrained K-means clustering for outlier detection and fuzzy modeling of distances to normality. A final score is also calculated over time, considering the membership degree to resulting fuzzy sets and a local outlier factor. Proposed solution is deployed in a CBM+ platform for online monitoring of the assets. In order to show the validity of the approach, experiments have been conducted on real operational faults in an auxiliary marine diesel engine. Experimental results show a fully comprehensive yet accurate prognostics approach, improving detection capabilities and knowledge management. The performance achieved is quite high (precision, sensitivity and specificity above 93% and κ = 0. 93), even more so given that a very small percentage of real faults are present in data.
Heating, ventilation, and air conditioning (HVAC) systems installed in a passenger train carriage are critical systems, whose failures can affect people or the environment. This, together with restrictive regulations, results in the replacement of critical components in initial stages of degradation, as well as a lack of data on advanced stages of degradation. This paper proposes a hybrid model-based approach (HyMA) to overcome the lack of failure data on a HVAC system installed in a passenger train carriage. The proposed HyMA combines physics-based models with data-driven models to deploy diagnostic and prognostic processes for a complex and critical system. The physics-based model generates data on healthy and faulty working conditions; the faults are generated in different levels of degradation and can appear individually or together. A fusion of synthetic data and measured data is used to train, validate, and test the proposed hybrid model (HyM) for fault detection and diagnostics (FDD) of the HVAC system. The model obtains an accuracy of 92.60%. In addition, the physics-based model generates run-to-failure data for the HVAC air filter to develop a remaining useful life (RUL) prediction model, the RUL estimations performed obtained an accuracy in the range of 95.21–97.80% Both models obtain a remarkable accuracy. The development presented will result in a tool which provides relevant information on the health state of the HVAC system, extends its useful life, reduces its life cycle cost, and improves its reliability and availability; thus enhancing the sustainability of the system.
An efficient and sustainable animal production requires fine-tuning and control of all the parameters involved. But this is not a simple task. Animal farming is a complex biological system in which environmental parameters and management practices interact in a dynamic way. In addition, the typical non-linear response of biological processes implies that relationships across parameters that are critical to assure animal welfare and performance are difficult to determine. In this paper a novel decision support system based on environmental indicators and on weights, leg problems and mortality rates is proposed to address this issue. The data-driven modeling process is performed by a quantile regression forests approach that allows estimating growth, welfare and mortality parameters on the basis of environmental
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.