Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
The costs of walking (Cw) and running (Cr) were measured on 10 runners on a treadmill inclined between -0.45 to +0.45 at different speeds. The minimum Cw was 1.64 +/- 0.50 J. kg(-1). m(-1) at a 1.0 +/- 0.3 m/s speed on the level. It increased on positive slopes, attained 17.33 +/- 1.11 J. kg(-1). m(-1) at +0.45, and was reduced to 0.81 +/- 0.37 J. kg(-1). m(-1) at -0.10. At steeper slopes, it increased to reach 3.46 +/- 0.95 J. kg(-1). m(-1) at -0.45. Cr was 3.40 +/- 0.24 J. kg(-1). m(-1) on the level, independent of speed. It increased on positive slopes, attained 18.93 +/- 1.74 J. kg(-1). m(-1) at +0.45, and was reduced to 1.73 +/- 0.36 J. kg(-1). m(-1) at -0.20. At steeper slopes, it increased to reach 3.92 +/- 0.81 J. kg(-1). m(-1) at -0.45. The mechanical efficiencies of walking and running above +0.15 and below -0.15 attained those of concentric and eccentric muscular contraction, respectively. The optimum gradients for mountain paths approximated 0.20-0.30 for both gaits. Downhill, Cr was some 40% lower than reported in the literature for sedentary subjects. The estimated maximum running speeds on positive gradients corresponded to those adopted in uphill races; on negative gradients they were well above those attained in downhill competitions.
Walking and running, the two basic gaits used by man, are very complex movements. They can, however, be described using two simple models: an inverted pendulum and a spring. Muscles must contract at each step to move the body segments in the proper sequence but the work done is, in part, relieved by the interplay of mechanical energies, potential and kinetic in walking, and elastic in running. This explains why there is an optimal speed of walking (minimal metabolic cost of about 2 J.kg(-1).m(-1) at about 1.11 m.s(-1)) and why the cost of running is constant and independent of speed (about 4 J.kg(-1).m(-1)). Historically, the mechanical work of locomotion has been divided into external and internal work. The former is the work done to raise and accelerate the body centre of mass (m) within the environment, the latter is the work done to accelerate the body segments with respect to the centre of m. The total work has been calculated, somewhat arbitrarily, as the sum of the two. While the changes of potential and kinetic energies can be accurately measured, the contribution of the elastic energy cannot easily be assessed, nor can the true work performed by the muscles. Many factors can affect the work of locomotion--the gradient of the terrain, body size (height and body m), and gravity. The partitioning of positive and negative work and their different efficiencies explain why the most economical gradient is about -10% (1.1 J.kg(-1).m(-1) at 1.3 m.s(-1) for walking, and 3.1 J.kg(-1).m(-1) at between 3 and 4 m.s(-1) for running). The mechanics of walking of children, pigmies and dwarfs, in particular the recovery of energy at each step, is not different from that of taller (normal sized) individuals when the speed is expressed in dynamically equivalent terms (Froude number). An extra load, external or internal (obesity) affects internal and external work according to the distribution of the added m. Different gravitational environments determine the optimal speed of walking and the speed of transition from walking to running: at more than 1 g it is easier to walk than to run, and it is the opposite at less than 1 g. Passive aids, such as skis or skates, allow an increase in the speed of progression, but the mechanics of the locomotion cannot be simply described using the models for walking and running because step frequency, the proportion of step duration during which the foot is in contact with the ground, the position of the limbs, the force exerted on the ground and the time of its application are all different.
Healthy septuagenarians with no gait impairment have an elevated C(W) which is not explained by an elevation in whole body mechanical work. Increased antagonist muscle co-activation (possibly an adaptation to ensure adequate joint stability) may offer partial explanation of the elevated C(W).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.