Transmission of non-persistent plant viruses is related to aphid behaviour during superficial brief probes. A widely accepted hypothesis postulates that virus acquisition occurs during ingestion of plant cell contents, and inoculation during egestion or regurgitation of previously ingested sap. Although conceptually attractive, this ingestionegestion hypothesis has not been clearly demonstrated. Furthermore, it overlooks the anatomy of the tips of the stylets (mouthparts) and, consequently, the potential role of salivation in the inoculation process. Here, we used the electrical penetration graph (EPG) technique to investigate aphid-stylet activities associated with uptake (acquisition) and release (inoculation) of two nonpersistently transmitted viruses. Our results show that acquisition occurs primarily during the last sub-phase (II-3) of intracellular stylet punctures, whereas inoculation is achieved during the first sub-phase (II-1). An alternative mechanism to the ingestion-egestion hypothesis is proposed on the basis of our findings.The transmission of non-persistent plant viruses is unique to aphids (Homoptera : Aphididae) because they exhibit specific and characteristic activities during brief (a few seconds or minutes) and superficial probes, involved in host plant recognition (Pollard, 1973). Two different hypotheses have been proposed to explain the mechanism of transmission. The first, so-called stylet-borne hypothesis (Kennedy et al., 1962),
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem‐limited bacteria (Candidatus Liberibacter spp.) associated with citrus ‘huanglongbing’ by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pêra (Rutaceae) by using the electrical penetration graph (EPG‐DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem‐limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G‐like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8‐h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non‐probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.
The unique color pattern polymorphism and the foamy nymphal case of the meadow spittlebug Philaenus spumarius have attracted the attention of scientists for centuries. Nevertheless, since this species has never been considered a major threat to agriculture, biological, ecological and ethological data are missing and rather scattered. To date this knowledge has become of paramount importance, in view of the discovery of P. spumarius main role in the transmission of the bacterium Xylella fastidiosa in Italy, and possibly in other European countries. The aim of this review is to provide a state of the art about this species, with particular focus on those elements that could help developing environmental friendly and sustainable control programs to prevent transmission of X. fastidiosa. Moreover, recent findings on the role of the meadow spittlebug as vector of the fastidious bacterium within the first reported European bacterium outbreak in Apulia (South Italy) will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.