ABSTRACT. Many snow models have been developed for various applications such as hydrology, global atmospheric circulation models and avalanche forecasting. The degree of complexity of these models is highly variable, ranging from simple index methods to multi-layer models that simulate snow-cover stratigraphy and texture. In the framework of the Snow Model Intercomparison Project (SnowMIP), 23 models were compared using observed meteorological parameters from two mountainous alpine sites.The analysis here focuses on validation of snow energy-budget simulations. Albedo and snow surface temperature observations allow identification of the more realistic simulations and quantification of errors for two components of the energy budget: the net short-and longwave radiation. In particular, the different albedo parameterizations are evaluated for different snowpack states (in winter and spring). Analysis of results during the melting period allows an investigation of the different ways of partitioning the energy fluxes and reveals the complex feedbacks which occur when simulating the snow energy budget. Particular attention is paid to the impact of model complexity on the energy-budget components. The model complexity has a major role for the net longwave radiation calculation, whereas the albedo parameterization is the most significant factor explaining the accuracy of the net shortwave radiation simulation.
A boundary layer field experiment in the Mexico City basin during the period 24 February-22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500-3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixedlayer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the transport and diffusion of air pollutants show less day-today regularity than had been anticipated on the basis of Mexico City's tropical location, high altitude and strong insolation, and topographical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.