The prediction of the motion of traffic participants is a crucial aspect for the research and development of Automated Driving Systems (ADSs). Recent approaches are based on multi-modal motion prediction, which requires the assignment of a probability score to each of the multiple predicted motion hypotheses. However, there is a lack of ground truth for this probability score in the existing datasets. This implies that current Machine Learning (ML) models evaluate the multiple predictions by comparing them with the single real trajectory labeled in the dataset. In this work, a novel data-based method named Probabilistic Traffic Motion Labeling (PROMOTING) is introduced in order to (a) generate probable future routes and (b) estimate their probabilities. PROMOTING is presented with the focus on urban intersections. The generation of probable future routes is (a) based on a real traffic dataset and consists of two steps: first, a clustering of intersections with similar road topology, and second, a clustering of similar routes that are driven in each cluster from the first step. The estimation of the route probabilities is (b) based on a frequentist approach that considers how traffic participants will move in the future given their motion history. PROMOTING is evaluated with the publicly available Lyft database. The results show that PROMOTING is an appropriate approach to estimate the probabilities of the future motion of traffic participants in urban intersections. In this regard, PROMOTING can be used as a labeling approach for the generation of a labeled dataset that provides a probability score for probable future routes. Such a labeled dataset currently does not exist and would be highly valuable for ML approaches with the task of multi-modal motion prediction. The code is made open source.
A highly accurate reference vehicle state is a requisite for the evaluation and validation of Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADASs). This highly accurate vehicle state is usually obtained by means of Inertial Navigation Systems (INSs) that obtain position, velocity, and Course Over Ground (COG) correction data from Satellite Navigation (SatNav). However, SatNav is not always available, as is the case of roofed places, such as parking structures, tunnels, or urban canyons. This leads to a degradation over time of the estimated vehicle state. In the present paper, a methodology is proposed that consists on the use of a Machine Learning (ML)-method (Transformer Neural Network—TNN) with the objective of generating highly accurate velocity correction data from On-Board Diagnostics (OBD) data. The TNN obtains OBD data as input and measurements from state-of-the-art reference sensors as a learning target. The results show that the TNN is able to infer the velocity over ground with a Mean Absolute Error (MAE) of 0.167 kmh (0.046 ms) when a database of 3,428,099 OBD measurements is considered. The accuracy decreases to 0.863 kmh (0.24 ms) when only 5000 OBD measurements are used. Given that the obtained accuracy closely resembles that of state-of-the-art reference sensors, it allows INSs to be provided with accurate velocity correction data. An inference time of less than 40 ms for the generation of new correction data is achieved, which suggests the possibility of online implementation. This supports a highly accurate estimation of the vehicle state for the evaluation and validation of AD and ADAS, even in SatNav-deprived environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.