Mutations in neurofibromin, a Ras GTPase-activating protein, lead to the tumor predisposition syndrome neurofibromatosis type 1. Here, we report that cells lacking neurofibromin exhibit enhanced glycolysis and decreased respiration in a Ras/ERK-dependent way. In the mitochondrial matrix of neurofibromin-deficient cells, a fraction of active ERK1/2 associates with succinate dehydrogenase (SDH) and TRAP1, a chaperone that promotes the accumulation of the oncometabolite succinate by inhibiting SDH. ERK1/2 enhances both formation of this multimeric complex and SDH inhibition. ERK1/2 kinase activity is favored by the interaction with TRAP1, and TRAP1 is, in turn, phosphorylated in an ERK1/2-dependent way. TRAP1 silencing or mutagenesis at the serine residues targeted by ERK1/2 abrogates tumorigenicity, a phenotype that is reverted by addition of a cell-permeable succinate analog. Our findings reveal that Ras/ERK signaling controls the metabolic changes orchestrated by TRAP1 that have a key role in tumor growth and are a promising target for anti-neoplastic strategies.
Survival of tumor cells is favored by mitochondrial changes that make death induction more difficult in a variety of stress conditions, such as exposure to chemotherapeutics. These changes are not fully characterized in tumor mitochondria, and include unbalance of the redox equilibrium, inhibition of permeability transition pore (PTP) opening through kinase signaling pathways and modulation of members of the Bcl-2 protein family. Here we show that a novel chemotherapeutic, the Gold(III)-dithiocarbamato complex AUL12, induces oxidative stress and tumor cell death both favoring PTP opening and activating the pro-apoptotic protein Bax of the Bcl-2 family. AUL12 inhibits the respiratory complex I and causes a rapid burst of mitochondrial superoxide levels, leading to activation of the mitochondrial fraction of GSK-3α/β and to the ensuing phosphorylation of the mitochondrial chaperone cyclophilin D, which in turn facilitates PTP opening. In addition, following AUL12 treatment, Bax interacts with active GSK-3α/β and translocates onto mitochondria, where it contributes to PTP induction and tumor cell death. These findings provide evidence that targeting the redox equilibrium maintained by mitochondria in tumor cells allows to hit crucial mechanisms that shield neoplasms from the toxicity of many anti-tumor strategies, and identify AUL12 as a promising chemotherapeutic compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.