Summary 1.Although the home range is a fundamental ecological concept, there is considerable debate over how it is best measured. There is a substantial literature concerning the precision and accuracy of all commonly used home range estimation methods; however, there has been considerably less work concerning how estimates vary with sampling regime, and how this affects statistical inferences. 2. We propose a new procedure, based on a variance components analysis using generalized mixed effects models to examine how estimates vary with sampling regime. 3. To demonstrate the method we analyse data from one study of 32 individually marked roe deer and another study of 21 individually marked kestrels. We subsampled these data to simulate increasingly less intense sampling regimes, and compared the performance of two kernel density estimation (KDE) methods, of the minimum convex polygon (MCP) and of the bivariate ellipse methods. 4. Variation between individuals and study areas contributed most to the total variance in home range size. Contrary to recent concerns over reliability, both KDE methods were remarkably efficient, robust and unbiased: 10 fixes per month, if collected over a standardized number of days, were sufficient for accurate estimates of home range size. However, the commonly used 95% isopleth should be avoided; we recommend using isopleths between 90 and 50%. 5. Using the same number of fixes does not guarantee unbiased home range estimates: statistical inferences differ with the number of days sampled, even if using KDE methods. 6. The MCP method was highly inefficient and results were subject to considerable and unpredictable biases. The bivariate ellipse was not the most reliable method at low sample sizes. 7. We conclude that effort should be directed at marking more individuals monitored over long periods at the expense of the sampling rate per individual. Statistical results are reliable only if the whole sampling regime is standardized. We derive practical guidelines for field studies and data analysis.
Animal home range use is a central focus of ecological research. However, how and why home range size varies between individuals is not well studied or understood for most species. We develop a hierarchical analytical approach--using generalized linear mixed-effects modeling of time series of home range sizes--that allows variance in home range size to be decomposed into components due to variation in temporal, spatial, and individual-level processes, also facilitating intra- and interspecific comparative analyses. We applied the approach to data from a roe deer population radiotracked in central Italy. Over multiple timescales, temporal variation is explained by photoperiod and climate and spatial variation by the distribution of habitat types and spatial variance in radiotracking error. Differences between individuals explained a substantial amount of variance in home range size, but only a relatively minor part was explained by the individual attributes of sex and age. We conclude that the choice of temporal scale at which data are collected and the definition of home range can significantly influence biological inference. We suggest that the appropriate choice of scale and definition requires a good understanding of the ecology and life history of the study species. Our findings contrast with several common assumptions about roe deer behavior.
Background: The geographical distribution of the Chilean flamingo (Phoenicopterus chilensis) includes the southern-central Neotropics. Despite its wide distribution, currently there is no dietary information on its southern distribution range. From June to September 2011, we quantified the diet and prey availability of the Chilean flamingo in the marine wetland of Caulín (41°48' S, 73°37' W), southern Chile.Results: The prey availability related to both plankton and benthos were four species of copepods, four polychaetes, one foraminifera, and two amphipods. The diet of the Chilean flamingo was composed of foraminifera (Ammonia beccarii), copepods (Harpacticus sp.) and polychaetes. The most abundant prey items from feces of flamingos were Ammonia beccarii and Harpacticus sp. The diameter of A. beccarii consumed by flamingos ranged between 400 and 900 μm, while its width varied between 100 and 300 μm. The width of Harpacticus sp. consumed ranged between 160 and 260 μm. The similarity between flamingo diet and prey availability was 0.553. The diversity of prey organisms in the benthos was higher than that observed from plankton and feces of birds. A. beccarii was preferred over other prey consumed by flamingos. This preference is not related to the size of Harpacticus sp. but to their ability to swim and escape from flamingos. Conclusions:The dietary similarity of the Chilean flamingo versus the availability of prey in the environment (plankton and benthos) was 55%, indicating that the Chilean flamingo is a partially selective predator.
In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.