For the preparation of thermoresponsive copolymers, for e.g., tissue engineering scaffolds or drug carriers, a precise control of the synthesis parameters to set the lower critical solution temperature (LCST) is required. However, the correlations between molecular parameters and LCST are partially unknown and, furthermore, LCST is defined as an exact temperature, which oversimplifies the real situation. Here, random N-isopropylacrylamide (NIPAM)/dopamine methacrylamide (DMA) copolymers were prepared under a systematical variation of molecular weight and comonomer amount and their LCST in water studied by calorimetry, turbidimetry, and rheology. Structural information was deduced from observed transitions clarifying the contributions of molecular weight, comonomer content, end-group effect or polymerization degree on LCST, which were then statistically modeled. This proved that the LCST can be predicted through molecular structure and conditions of the solutions. While the hydrophobic DMA lowers the LCST especially the onset, polymerization degree has an important but smaller influence over all the whole LCST range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.