In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers (IAAC) have developed different techniques to provide Global Ionospheric Maps (GIMs) of Vertical Total Elec-
A summary of the main concepts on Global Ionospheric Map(s) (hereinafter GIM(s)) of Vertical Total Electron Content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the International Global Navigation Satellite Systems (GNSS) Service (IGS) Ionosphere Working Group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent Global Positioning System data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM 'UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centers and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.
1] A new GNSS Solar Flare Activity Indicator (GSFLAI) is presented, given by the gradient of the ionospheric Vertical Total Electron Content (VTEC) rate, in terms of the solar-zenithal angle, measured from a global network of dual-frequency GPS receivers. It is highly correlated with the Extreme Ultraviolet (EUV) photons flux rate at the 26-34 nm spectral band, which is geo-effective in the ionization of the mono-atomic oxygen in the Earth's atmosphere. The results are supported by the comparison of GSFLAI with direct EUV observations provided by SEM instrument of SOHO spacecraft, for all the X-class solar flares occurring between 2001 and 2011 (more than 1000 direct comparisons at the 15 s SEM EUV sampling rate). The GSFLAI sensitivity enables detection of not only extreme X-class flares, but also of variations of one order of magnitude or even smaller (such as for M-class flares). Moreover, an optimal detection algorithm (SISTED), sharing the same physical fundamentals as GSFLAI, is also presented, providing 100% successful detection for all the X-class solar flares during 2000-2006 with registered location outside of the solar limb (i.e., detection of 94% of all of X-class solar-flares) and about 65% for M-class ones. As a final conclusion, GSFLAI is proposed as a new potential proxy of solar EUV photons flux rate for strong and mid solar flares, presenting high sensitivity with high temporal resolution (1 Hz, greater than previous solar EUV irradiance instruments), using existing ground GNSS facilities, and with the potential use as a solar flare detection parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.