Fractional calculus is the mathematical subject dealing with integrals and derivatives of noninteger order. Although its age approaches that of classical calculus, its applications in mechanics are relatively recent and mainly related to fractional damping. Investigations using fractional spatial derivatives are even newer. In the present paper spatial fractional calculus is exploited to investigate a material whose nonlocal stress is defined as the fractional integral of the strain field. The developed fractional nonlocal elastic model is compared with standard integral nonlocal elasticity, which dates back to Eringen's works. Analogies and differences are highlighted. The long tails of the power law kernel of fractional integrals make the mechanical behaviour of fractional nonlocal elastic materials peculiar. Peculiar are also the power law size effects yielded by the anomalous physical dimension of fractional operators. Furthermore we prove that the fractional nonlocal elastic medium can be seen as the continuum limit of a lattice model whose points are connected by three levels of springs with stiffness decaying with the power law of the distance between the connected points. Interestingly, interactions between bulk and surface material points are taken distinctly into account by the fractional model. Finally, the fractional differential equation in terms of the displacement function along with the proper static and kinematic boundary conditions are derived and solved implementing a suitable numerical algorithm. Applications to some example problems conclude the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.