It is a fact that electric vehicles (EVs) are beneficial for climate protection. However, the current challenge is to decide on whether to reuse an EV battery or to recycle it after its first use. This paper theoretically investigates these areas i.e., recycle and reuse. It was found that there are several commercially used recycling processes and also some are under research to regain maximum possible materials and quantity. The concept of reusing (second life) of the battery is promising because, at the end of the first life, batteries from EVs can be used in several applications such as storing energy generated from renewable sources to support the government grid. However, the cost and life-cycle analysis (LCA) demonstrated that there are several aspects involved in battery reuse applications. Henceforth, one LCA generalised method cannot provide an optimal approach for all cases. It is important to have a detailed study on each of the battery reusing applications. Until then, it is safe to say that reusing the battery is a good option as it would give some time to recycling companies to develop cost and energy-efficient methods.
Abstract:The processes involved in the assembly of zinc acetate dihydrate {Zn(CH 3 COO) 2 ·2H 2 O} and ethanolamine (H 2 NCH 2 CH 2 OH), with or without 2-methoxyethanol as solvent, have been analysed by infrared spectra, mass spectrometry, nuclear magnetic resonance, powder X-ray diffraction and computational studies. Thermal evolution of the mixtures was characterized by thermoanalytical and structural techniques (thermogravimetry, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and X-Ray photoelectron spectroscopy). Computational studies together with experiments served to thoroughly describe the precursor and its decomposition. The thermal decomposition of the mixture and its transformation into crystalline ZnO take place in a temperature range between 50 and 450 °C through different processes. With solvent, the processes need temperatures
This work presents a detailed structural and chemical characterization of the system formed by zinc acetate dihydrate (ZAD) and ethanolamine (EA) with methoxyethanol (ME), in order to describe its stability. The origin of the mixture degradation during storage at room conditions is analyzed. Theoretical calculations of the frontier orbitals of the system ZAD plus EA under interaction with ME and CO 2 are used to deduce energy levels and stability of the different molecules appearing in the ZAD-EA-ME system. The models were tested as potential energy minimum and their photo-absorption spectra were simulated. The dimerization process leading from the simplest configuration to the most abundant one is also theoretically analyzed and used to describe the effect of the nuclearity raise on the mixture stability. Our results explain the experimental observations and provide a better understanding of the role played by EA in the formation of ZnO and, consequently, allow optimizing the technological processes to prepare these films.
Here we present comparative studies of: (i) the formation of ZnO thin films via the sol-gel method using zinc acetate dihydrate (ZAD), 2-methoxyethanol (ME) as solvent, and the aminoalcohols (AA): ethanolamine, (S)-(+)-2-amino-1-propanol, (S)-(+)-2-amino-3-methyl-1-butanol, 2-aminophenol, and aminobenzyl alcohol, and (ii) elemental analyses, infrared spectroscopy, X-ray diffraction, scanning electron microscopy, absorption and emission spectra of films obtained after deposition by drop coating on glass surface, and thermal treatments at 300, 400, 500 and 600 °C. The results obtained provide conclusive evidences of the influence of the AA used (aliphatic vs. aromatic) on the ink stability (prior to deposition), and on the composition, structures, morphologies, and properties of films after calcination, in particular, those due to the different substituents, H, Me, or iPr, and to the presence or the absence of a –CH2 unit. Aliphatic films, more stable and purer than aromatic ones, contained the ZnO wurtzite form for all annealing temperatures, while the cubic sphalerite (zinc-blende) form was also detected after using aromatic AAs. Films having frayed fibers or quartered layers or uniform yarns evolved to “neuron-like” patterns. UV and photoluminescence studies revealed that these AAs also affect the optical band gap, the structural defects, and photo-optical properties of the films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.