In this paper we explore minimum odd and minimum even depth subalgebra pairs in the context of double cross products of finite dimensional Hopf algebras. We start by defining factorization algebras and outline how subring depth in this context relates with the module depth of the regular left module representation of the given subalgebra. Next we study minimum odd depth for double cross product Hopf subalgebras and determine their value in terms of their related module depth, we conclude that minimum odd depth of Drinfel'd double Hopf subalgebras is 3. Finaly we produce a necessary and sufficient condition for depth 2 in double cross product Hopf subalgebra extensions. This sufficient condition is then used to prove results regarding minimum depth 2 in Drinfel'd double Hopf subalgebras, particularly in the case of finite Group Hopf algebras. Lastly we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.