Seawater desalination can provide water for irrigation in coastal regions where freshwater resources are scarce. Reverse osmosis (RO) is the most common technique to obtain desalinated seawater (DSW) worldwide. However, using DSW for irrigation may pose an agronomic risk as RO permeates have a boron concentration above the phytotoxicity thresholds of some sensitive crops, such as woody crops (0.5 to 1.0 mg/L). In this study, an on-farm RO system designed to reduce the boron concentration of DSW was evaluated from a technical and economic perspective. The impact of variations in the operating parameters feed water temperature, pressure, and pH, on the boron reduction process was assessed. The results showed that boron rejections close to 99% can be obtained by increasing the feed water pH to 11 with an operating pressure of 10 bar. Looking at the affordability of the system, a total production cost of 1.076 EUR/m3 was estimated for the 1.1 m3/h on-farm system used in the trial. However, this cost is expected to decrease to 0.307 EUR/m3 for a commercial RO plant (42 m3/h), highlighting the importance of the scale factor. Our results provide novel guidance on the feasibility of implementing on-farm boron removal RO systems, when DSW is provided by coastal plants with boron concentrations above the crop tolerance.
Modern irrigation technologies and tools can help boost fertigation efficiency and sustainability, particularly when using irrigation water of varying quality. In this study, a high-tech irrigation head using a new fertigation optimization tool called NutriBalance, which is designed to manage feed waters of different qualities, has been evaluated from technical and economic perspectives. NutriBalance computes the optimal fertigation dose based on specific data about the equipment, the crop, the irrigation water, and the fertilizers available, in order to enable autonomous and accurate water and fertilizer supply. The system was trialed in a grapefruit orchard irrigated with fresh and desalinated water for several values of crop nutritional requirements and considering different fertilizer price scenarios. The results showed the good interoperability between the tool and the irrigation head and the nearly flawless ability (error below 7% for most ions) of the system to provide the prescribed fertigation with different combinations of irrigation water. Fertilizer savings of up to 40% were achieved, which, for the lifespan of the equipment, were estimated to correspond to around 500 EUR/ha/year. The results of this study can encourage the adoption of novel technologies and tools by farmers.
Desalinated seawater (DSW) can provide water resources for irrigation in coastal regions where freshwater is scarce. Reverse osmosis (RO) is the most common technique to obtain DSW worldwide. Nevertheless, using DSW for irrigation could pose an agronomic risk as RO permeates may have a boron concentration above the phytotoxicity thresholds of certain crops, such as woody crops (0.5 to 1.0 mg/L). In this study, an on-farm ion exchange resin system with an average flow of 1 m3/h, designed to reduce the boron concentration of DSW, was evaluated from a technical and economic perspective. The impact of variations in the feed water and operating temperatures on the boron reduction process was assessed. The results show that the system can provide an outflow with a boron concentration below the threshold of 0.5 mg/L over 92 h of operation, with boron rejections of up to 99% during the first 41 h. The estimated cost of boron removal with the on-farm system of the trial was EUR 0.992/m3. However, this cost is expected to decrease to EUR 0.226/m3 for a commercial ion exchange resin (IX) plant (20 m3/h), highlighting the importance of the scale factor. Our results provide novel guidance on the viability of using boron removal IX systems for farms irrigated with DSW, when it is provided by coastal plants with boron concentrations above the crop tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.