Background Levodopa is the most effective therapy for Parkinson's disease (PD), but chronic treatment is associated with the development of potentially disabling motor complications. Experimental studies suggest that motor complications are due to non-physiologic, intermittent administration of the drug, and can be reduced with continuous delivery. Levodopa-carbidopa intestinal gel (LCIG) is a form of levodopa that can be delivered continuously through an intrajejunal percutaneous tube. Methods We performed a 12-week double-blind, double-dummy, double-titration, multi-center trial to evaluate the efficacy and safety of LCIG compared to optimized, oral, immediate-release levodopa-carbidopa (LC-IR) in advanced PD patients with motor complications. The primary endpoint was change from baseline to final visit in motor “Off” time. Motor “On” time without troublesome dyskinesia was the key secondary endpoint. Findings 71 patients with advanced PD were randomized to receive continuous LCIG infusion plus placebo LC-IR capsules (n=37) or to receive LC-IR capsules plus continuous placebo LCIG infusion (n=34). Both groups were titrated to optimal effect. 93% of subjects (n=66) completed the trial. In comparison to LC-IR, LCIG significantly reduced “Off” time by a mean (±SE) of 1·91±0·57 hours (P=0·0015) and increased “On” time without troublesome dyskinesia by a mean of 1·86±0·65 hours (P=0·006). Adverse events were primarily related to the surgical procedure and the device, and while potentially serious, were not associated with residual deficit or mortality. Interpretation In comparison to standard oral LC-IR, LCIG significantly reduced “Off” time and increased “On” time without troublesome dyskinesia in patients with advanced PD. Adverse events were largely due to the procedure and the device. Benefits are of greater magnitude than have been obtained with medical therapies to date, and represent the first demonstration of the benefit of continuous levodopa delivery in a double-blind controlled study.
IMPORTANCE-Functional neurological disorders (FND) are common sources of disability in medicine. Patients have often been misdiagnosed, correctly diagnosed after lengthy delays, and/or subjected to poorly delivered diagnoses that prevent diagnostic understanding and lead to inappropriate treatments, iatrogenic harm, unnecessary and costly evaluations, and poor outcomes. OBSERVATIONS-Functional Neurological Symptom Disorder/Conversion Disorder was adopted by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, replacing the term psychogenic with functional and removing the criterion of psychological stress as a Funding/Support: This article presents independent research part-funded by the
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capturing of more and previously inaccessible phenomena in Parkinson disease (PD). However, more information has not translated into greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include non-compatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (in particular among vulnerable elderly patients), and the gap between the “big data” acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms enabling multi-channel data capture, sensitive to the broad range of motor and non-motor problems that characterize PD, and adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to: 1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones; 2) enhance tailoring of symptomatic therapy; 3) improve subgroup targeting of patients for future testing of disease modifying treatments; and 4) identify objective biomarkers to improve longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the Task Force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and quality of life of individuals with PD.
Motor complications in Parkinson's disease (PD) are associated with long-term oral levodopa treatment and linked to pulsatile dopaminergic stimulation. l-dopa-carbidopa intestinal gel (LCIG) is delivered continuously by percutaneous endoscopic gastrojejunostomy tube (PEG-J), which reduces l-dopa-plasma–level fluctuations and can translate to reduced motor complications. We present final results of the largest international, prospective, 54-week, open-label LCIG study. PD patients with severe motor fluctuations (>3 h/day “off” time) despite optimized therapy received LCIG monotherapy. Additional PD medications were allowed >28 days post-LCIG initiation. Safety was the primary endpoint measured through adverse events (AEs), device complications, and number of completers. Secondary endpoints included diary-assessed off time, “on” time with/without troublesome dyskinesia, UPDRS, and health-related quality-of-life (HRQoL) outcomes. Of 354 enrolled patients, 324 (91.5%) received PEG-J and 272 (76.8%) completed the study. Most AEs were mild/moderate and transient; complication of device insertion (34.9%) was the most common. Twenty-seven (7.6%) patients withdrew because of AEs. Serious AEs occurred in 105 (32.4%), most commonly complication of device insertion (6.5%). Mean daily off time decreased by 4.4 h/65.6% (P < 0.001). On time without troublesome dyskinesia increased by 4.8 h/62.9% (P < 0.001); on time with troublesome dyskinesia decreased by 0.4 h/22.5% (P = 0.023). Improvements persisted from week 4 through study completion. UPDRS and HRQoL outcomes were also improved throughout. In the advanced PD population, LCIG's safety profile consisted primarily of AEs associated with the device/procedure, l-dopa/carbidopa, and advanced PD. LCIG was generally well tolerated and demonstrated clinically significant improvements in motor function, daily activities, and HRQoL sustained over 54 weeks. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures, and ataxia. We exome-sequenced 84 unrelated PME patients of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation c.959G>A (p.Arg320His) in KCNC1 was identified as a novel major cause for PME. Eleven unrelated exome-sequenced (13%) and two patients in a secondary cohort (7%) had this mutation. KCNC1 encodes K V 3.1, a subunit of the K V 3 voltage-gated K + channels, major determinants of high-frequency neuronal firing. Functional analysis of the p.Arg320His mutant channel revealed a dominant-negative loss-of-function effect. Ten patients had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6, SERPINI1). Identification of mutations in PRNP, SACS, and TBC1D24 expand their phenotypic spectrum to PME. These findings provide important insights into the molecular genetic basis of PME and reveal the role of de novo mutations in this disease entity.Correspondence should be addressed to Anna-Elina Lehesjoki (anna-elina.lehesjoki@helsinki.fi). Author Contributions Accession codesMutation nomenclatures correspond to the following canonical Ensembl transcripts: KCNC1, ENST00000265969.6; NEU1, ENST00000375631.4; NHLRC1, ENST00000340650.3; EPM2A, ENST00000367519.3; CLN6, ENST00000249806.5; AFG3L2, ENST00000269143.3; TBC1D24, ENST00000293970.5; SACS, ENST00000382298.3; SERPINI1, ENST00000295777.5; PRNP, ENST00000379440.4; SCN1A, ENST00000303395.4. The raw aligned sequence reads were submitted to the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/home) by Wellcome Trust Sanger Institute under study accession numbers EGAS00001000048 and EGAS00001000386. Competing Financial InterestsAuthors declare no potential competing financial interests. Europe PMC Funders GroupAuthor Manuscript Nat Genet. Author manuscript; available in PMC 2015 July 01. Published in final edited form as:Nat Genet. 5,6 and GOSR2 7 also contribute to cases of PME with preserved cognition. Other PMEs may have additional features, particularly dementia. PME-associated genes encode a variety of proteins, many of them being associated with endosomal and lysosomal function 8,9 , but the associated disease mechanisms are generally poorly understood.The precise clinical diagnosis of specific forms of PME is challenging due to their genetic heterogeneity, phenotypic similarities and overlap of symptoms with other epileptic and neurodegenerative diseases. In many cases, there are no distinguishing clinical features or biomarkers. Consequently, a substantial proportion of PME cases remain without a molecular diagnosis 3 .Here, we aimed to identify the causative genes for unsolved PME cases by employing exome sequencing in unrelated patients assembled from multiple centers in Europe, North America, Asia, and Australia over a 25-year period. The extent of previous molecular studies varied, but all cases were negative for mutations in the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.