Steady-state and time-resolved studies have been performed on four compounds of the pterin family (pterin, 6-carboxypterin, 6-formylpterin and folic acid) in aqueous solution, using the single photon counting technique. The fluorescence characteristics (spectra, quantum yields, lifetimes) of these compounds and their dependence on the pH have been investigated. Most pterins can exist in two acid-base forms over the pH range between 3 and 13. Emission spectra and excitation spectra were obtained for both forms of each compound studied. Fluorescence quantum yields (phi(F)) in acidic and basic media were measured. The phi(F) of folic acid (< 0.005 in both media) is very low compared to those of pterin (0.27 in basic media and 0.33 in acidic media), 6-carboxypterin (0.18 in basic media and 0.28 in acidic media) and 6-formylpterin (0.07 in basic media and 0.12 in acidic media). The variation in integrated fluorescence intensity and fluorescence lifetimes (tau(F)) was analysed as a function of pH. Dynamic quenching by OH- was observed and the corresponding bimolecular rate constants for quenching of fluorescence (k(q)) were calculated. The reported values for k(q) (M(-1) s(-1)) are 3.6 x 10(9), 1.9 x 10(9) and 1.1 x 10(10) M(-1) s(-1) for pterin, 6-carboxypterin and 6-formylpterin, respectively.
Six compounds of the pterin family (pterin, 6-carboxypterin, 6-formylpterin, folic acid, biopterin and neopterin) have been investigated for their efficiencies of singlet oxygen (O2(1deltag)) production and quenching in aqueous solutions. The quantum yields of 1O2 production (phidelta) have been determined by measurements of the 1O2 luminescence in the near-infrared (1270 nm) upon continuous excitation of the sensitizer. Under our experimental conditions, all studied compounds (except folic acid) are relatively efficient 1O2 sensitizers with phidelta values of up to 0.47. Results show that the nature of the substituent at position 6 on the pterin moiety, as well as the pH, affect considerably the capacity of pterins to produce 1O2. All compounds investigated are efficient 1O2 quenchers: the rate constant of 1O2 total quenching (kt) by folic acid (3.0(+/- 0.3) x 10(7) M(-1) s(-1)) is one order of magnitude larger than those for the other pterin derivatives investigated (1.4(+/- 0.1) x 10(6) M(-1) s(-1) to 2.9(+/- 0.3) x 10(6) M(-1) s(-1)).
UV-A radiation (320-400 nm) induces damage to the DNA molecule and its components through different photosensitized reactions. Among these processes, photosensitized oxidations may occur through electron transfer or hydrogen abstraction (type I) and/or the production of singlet molecular oxygen ((1)O2) (type II). Pterins, heterocyclic compounds widespread in biological systems, participate in relevant biological processes and are able to act as photosensitizers. We have investigated the photosensitized oxidation of 2'-deoxyguanosine 5'-monophosphate (dGMP) by pterin (PT) in aqueous solution under UV-A irrradiation. Kinetic analysis was employed to evaluate the participation of both types of mechanism under different pH conditions. The rate constant of (1)O2 total quenching (k(t)) by dGMP was determined by steady-state analysis of the (1)O2 NIR luminescence, whereas the rate constant of the chemical reaction between (1)O2 and dGMP (k(r)) was evaluated from kinetic analysis of concentration profiles obtained by HPLC. The results show that the oxidation of dGMP photosensitized by PT occurs through two competing mechanisms that contribute in different proportions depending on the pH. The dominant mechanism in alkaline media involves the reaction of dGMP with (1)O2 produced by energy transfer from the PT triplet state to molecular oxygen (type II). In contrast, under acidic pH conditions, where PT and the guanine moiety of dGMP are not ionized, the main pathway for dGMP oxidation involves an initial electron transfer between dGMP and the PT triplet state (type I mechanism). The biological implications of the results obtained are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.