Sperm DNA fragmentation is not related to chromosomal anomalies in embryos from patients with recurrent miscarriage or implantation failure. However, we cannot rule out the possibility that a relationship between DNA fragmentation and aneuploidy exists for other causes of infertility. Furthermore, the different methods used to evaluate DNA fragmentation may produce different results.
One of the most important limitations of genetic testing in preimplantation embryos is embryonic mosaicism, especially when performed on D3 with only a single blastomere evaluated. Previous publications, using Array-Comparative Genomic Hybridization (a-CGH) to compare day 3 (D3) biopsies versus trophectoderm biopsies for the analysis of aneuploid embryos, showed similar high concordance rates per embryo diagnosis for D3 biopsies and trophectoderm biopsies. Next generation sequencing (NGS) was introduced lately as a new technique for preimplantation genetic testing for aneuploidies (PGT-A). Using this technique, this retrospective descriptive study evaluated the degree of the concordance of the diagnosis between preimplantation human cleavage stage (D3) and blastocyst stage (D5) embryos. Double biopsies on D3 and D5 were performed on 118 embryos, reaching blastocyst stage on D5 and had not been selected for transfer. As the fertilization law of the United Arab Emirates does not allow embryo freezing, also surplus euploid embryos after D 3 biopsy were included.Analysis of the NGS results from D3 and D5 embryo biopsies showed a total concordance rate per embryo diagnosis of 85.6% for euploid and aneuploid embryos. The concordance rates per embryo chromosomal pattern for embryo diagnosed as aneuploid at both biopsy stages was 82.2%. However, the status regarding the affected chromosomes was not identical on D3 and D5. Hence, the total concordance rate between D3 biopsy and D5 biopsy was limited to 67.8%.This current study clearly demonstrated that the concordance rates between D3 and D5 biopsies in aneuploid and euploid embryos are lower than previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.