Inkjet-printing is one of the most important fabrication techniques in the field of printed electronics. Its main advantages include the possibility of fabricating, at ambient conditions and by employing a digital layout, a large variety of electronic devices on different types of substrates, including flexible plastic ones. In this paper, the utilization of inkjet-printing as an important fabrication tool for the realization of organic transistors and circuits/sensing systems based on such type of transistors is reviewed. The most important aspects of the fabrication process, including ink formulation, printing deposition, and postprinting treatment, are described in detail. The most significant examples of inkjet-printed organic transistors of different types (field-effect, electrolytegated, and electrochemical) are presented and finally an overview of their applications as building blocks of more complex electronic circuits and systems for the detection and quantification of specific measurands is provided.
The paper focuses on the manufacturing technology of modular components for large-area tactile sensors, which are made of arrays of polyvinylidene fluoride (PVDF) piezoelectric polymer taxels integrated on flexible PCBs. PVDF transducers were chosen for the high electromechanical transduction frequency bandwidth (up to 1 kHz for the given application). Patterned electrodes were inkjet printed on the PVDF film. Experimental tests on skin module prototypes demonstrate the feasibility of the proposed approach and reveal the potentiality to build large area flexible and conformable robotic skin. I.
The paper focuses on the manufacturing technology of modular components for large-area tactile sensors, which are made of arrays of polyvinylidene fluoride (PVDF) piezoelectric polymer taxels integrated on flexible PCBs. PVDF transducers were chosen for the high electromechanical transduction frequency bandwidth (up to 1 kHz for the given application). Patterned electrodes were inkjet printed on the PVDF film. Experimental tests on skin module prototypes demonstrate the feasibility of the proposed approach and reveal the potentiality to build large area flexible and conformable robotic skin
Background: An aspect that influences sport performance is maturation status, since, within the same chronological age group, boys who have advanced maturation outperform their late maturing peers in tests of muscular strength, power, and endurance. Therefore, the aims of the present study were: (i) to investigate the differences in biological maturation and anthropometric and morphological characteristics among three groups of Italian adolescents, two of which were sportive (practicing basketball and football) and one non-sportive, and (ii) to identify the anthropometric and morphological predictors that best discriminate these three groups. Methods: Sixty-one basketball and 62 soccer players and 68 non-sportive youths were measured (mean age = 13.0 ± 1.1 y). Anthropometric characteristics were taken and body mass index, cormic index, body composition parameters, and somatotype were derived. An estimation of maturity status was carried out considering the years from peak height velocity (PHV). Two-way 3 × 3 ANOVAs was performed on all anthropometric characteristics to test the differences within sport groups and maturity status groups. Discriminant function analysis (stepwise criteria) was then applied to anthropometric and body composition variables to classify subjects into the three different sport categories. Results: Differences in anthropometric characteristics were detected among the three groups. For somatotype, differences among all of the considered groups were higher for endomorphy (p < 0.001; effect size = 0.13). Biological maturity influences the differences in the anthropometric characteristics and body composition among subjects of the same chronological age during adolescence. The variables that best discriminated the three groups were represented by body composition parameters, body proportions, and body build. Conclusions: This study confirms that boys who practice sport present healthier body composition parameters, with lower level of fat parameters. The assessment of maturity status is a fundamental factor in explaining anthropometric and body composition differences among peers in this period. Its comprehension may assist coaches and technical staff in optimizing competitive efficiency and monitoring the success of training regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.