The problem of computing the strategy to commit to has been widely investigated in the scientific literature for the case where a single follower is present. In the multi-follower setting though, results are only sporadic. In this paper, we address the multi-follower case for normal-form games, assuming that, after observing the leader's commitment, the followers play pure strategies and reach a Nash equilibrium. We focus on the pessimistic case where, among many equilibria, one minimizing the leader's utility is chosen (the opposite case is computationally trivial). We show that the problem is NP-hard even with only two followers, and propose an exact exponential-time algorithm which, for any number of followers, finds either an equilibrium when it exists (the leader's utility admitting a maximum) or, if not, an α-approximation of the supremum, for any α > 0.
The existence of uncoupled no-regret learning dynamics converging to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and the presence of private information, correlation in extensive-form games possesses significantly different properties than in normal-form games. The extensive-form correlated equilibrium (EFCE) is the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device ({\em a.k.a.} mediator) must take into account the evolution of beliefs of each player as they make observations throughout the game. Due to this additional complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics which provably converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play after T game repetitions is guaranteed to be a O(T^-1/2)-approximate EFCE with high probability, and an EFCE almost surely in the limit.
The concept of leader-follower (or Stackelberg) equilibrium plays a central role in a number of real-world applications bordering on mathematical optimization and game theory. While the single-follower case has been investigated since the inception of bilevel programming with the seminal work of von Stackelberg, results for the case with multiple followers are only sporadic and not many computationally affordable methods are available. In this work, we consider Stackelberg games with two or more followers who play a (pure or mixed) Nash equilibrium once the leader has committed to a (pure or mixed) strategy, focusing on normal-form and polymatrix games. As customary in bilevel programming, we address the two extreme cases where, if the leader's commitment originates more Nash equilibria in the followers' game, one which either maximizes (optimistic case) or minimizes (pessimistic case) the leader's utility is selected. First, we show that, in both cases and when assuming mixed strategies, the optimization problem associated with the search problem of finding a Stackelberg equilibrium is N P-hard and not in Poly-APX unless P = N P. We then consider different situations based on whether the leader or the followers can play mixed strategies or are restricted to pure strategies only, proposing exact nonconvex mathematical programming formulations for the optimistic case for normal-form and polymatrix games. For the pessimistic problem, which cannot be tackled with a (single-level) mathematical programming formulation, we propose a heuristic black-box algorithm. All the methods and formulations that we propose are thoroughly evaluated computationally.
We study Stackelberg games where the underlying structure is a congestion game. We recall that, while leadership in 2-player games has been widely investigated, only few results are known when the number of players is three or more. The intractability of finding a Stackelberg equilibrium (SE) in normal-form and polymatrix games is among them. In this paper, we focus on congestion games in which each player can choose a single resource (a.k.a. singleton congestion games) and a player acts as leader. We show that, without further assumptions, finding an SE when the followers break ties in favor of the leader is not in Poly-APX, unless P = NP. Instead, under the assumption that every player has access to the same resources and that the cost functions are monotonic, we show that an SE can be computed efficiently when the followers break ties either in favor or against the leader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.