Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning (DL) is already present in many applications ranging from computer vision for medicine to autonomous driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve impressive performance, these algorithms employ very deep networks, requiring a significant computational power, both during the training and inference time. A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute-and energy-hungry. In a scenario where several sophisticated algorithms need to be executed with limited energy and low latency, the need for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance designs. This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper discusses some of the important security issues that these DNN and SNN models may have during their execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of different networks and hardware systems designed for them.
In the Machine Learning era, Deep Neural Networks (DNNs) have taken the spotlight, due to their unmatchable performance in several applications, such as image processing, computer vision, and natural language processing. However, as DNNs grow in their complexity, their associated energy consumption becomes a challenging problem. Such challenge heightens for edge computing, where the computing devices are resource-constrained while operating on limited energy budget. Therefore, specialized optimizations for deep learning have to be performed at both software and hardware levels. In this paper, we comprehensively survey the current trends of such optimizations and discuss key open research mid-term and long-term challenges.
Deep Neural Networks (DNNs) have been widely deployed for many Machine Learning applications. Recently, CapsuleNets have overtaken traditional DNNs, because of their improved generalization ability due to the multi-dimensional capsules, in contrast to the single-dimensional neurons. Consequently, CapsuleNets also require extremely intense matrix computations, making it a gigantic challenge to achieve high performance. In this paper, we propose CapsAcc, the first specialized CMOS-based hardware architecture to perform CapsuleNets inference with high performance and energy efficiency. State-of-the-art convolutional DNN accelerators would not work efficiently for CapsuleNets, as their designs do not account for key operations involved in CapsuleNets, like squashing and dynamic routing, as well as multi-dimensional matrix processing. Our CapsAcc architecture targets this problem and achieves significant improvements, when compared to an optimized GPU implementation. Our architecture exploits the massive parallelism by flexibly feeding the data to a specialized systolic array according to the operations required in different layers. It also avoids extensive load and store operations on the on-chip memory, by reusing the data when possible. We further optimize the routing algorithm to reduce the computations needed at this stage. We synthesized the complete CapsAcc architecture in a 32nm CMOS technology using Synopsys design tools, and evaluated it for the MNIST benchmark (as also done by the original CapsuleNet paper) to ensure consistent and fair comparisons. This work enables highly-efficient CapsuleNets inference on embedded platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.