By using silicate inorganic binders and glass waste it is possible to mould technical and artistic elements which later can be compacted by means of low temperature, and subsequently apply the sintering through high-temperature processing, which is generally lower than current melting glass processes, close to 1250 °C. The experimental phase established thermal ranges from 600°C to 750°C, a fact that allows for an effective sintering temperature (of around 650°C/18 hours). The mixtures and proportions for this experiment were fixed including ethyl silicate as a fluidizer in mixtures,as well as the size of glass grains.The results indicate good compaction of the samples after the initial phase (80°C/24h), allowing proper handling without alterations in samples edges.During heating treatment, mechanical resistance increases gradually (600-750°C), although the volume of porosity was inversely proportional. According to the matrix vs grain size relationship, the partial fusion of both materials is evident in the rounding of the glass grains as well as the resin bonds joined between them. The resins appeared in a homogenous fashion, covering and gluing the grains, a development which improves the joining of sintered samples. Samples with a mixture of sodium silicate and ethyl silicate resins experienced less melting between grains due to a lower volume of fluxing elements, which means a lower percentage volume of sodium (Na). This study concludes that a sintering process for new vitreous composites could be carried out between 650°C and 700°C, offering the opportunity for a substantial reduction in the amount of energy required to produce industrial glass. Keywords: Water-glass, glass recycling, low temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.