The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 Å. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Porphyrins such as protoporphyrin IX (PPIX) are known to occasionally cause conformational changes in proteins for which they are specific ligands. It has also been established that irradiation of porphyrins noncovalently intercalated between bases or bound to one of the grooves can cause conformational effects on DNA. Conversely, there is no evidence reported in the literature of conformational changes caused by noncovalently bound PPIX to globular proteins for which the porphyrin is not a specific ligand. This study shows that the irradiation of the porphyrin in the PPIX/lactoglobulin noncovalent complex indeed causes a local and limited (approximately 7%) unfolding of the protein near the location of Trp19. This event causes the intrinsic fluorescence spectrum of the protein to shift to the red by 2 nm and the average decay lifetime to lengthen by approximately 0.5 ns. The unfolding of lactoglobulin occurs only at pH >7 because of the increased instability of the protein at alkaline pH. The photoinduced unfolding does not depend on the presence of O2 in solution; therefore, it is not mediated by formation of singlet oxygen and is likely the result of electron transfer between the porphyrin and amino acid residues.
Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.