Lie groups carrying a left invariant symplectic form (symplectic groups) are described in terms of semi-direct product of Lie groups or symplectic reduction and principal fiber bundles with affine fiber. We give a generalization of Medina and Revoy's symplectic double extension, which realizes a symplectic group as the reduction of another symplectic group. We show that every group obtained by this process carries an invariant Lagrangian foliation such that the affine structure defined by the simplectic form over each leaf is complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.