Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.
There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.
The construction sector is one of the main consumers of raw materials and generates a high volume of waste within the European Union. The search for new materials that are more sustainable and respectful of the environment has become a challenge for countries with a high degree of industrialization. In this work, a study of the most relevant properties of masonry mortars made with recycled aggregates and reinforced with synthetic fibers was carried out. Three types of aggregates were used—natural, concrete recycling and ceramic recycling—and two types of reinforcing fibers: polypropylene and polyolefin. In this way, various tests of physical-mechanical characterization and a statistical analysis of the results were carried out. It has been shown that the mortars made from aggregate recycled concrete and reinforced with polypropylene fiber are the ones with the best properties for application in the construction sector, although without improving the properties of traditional mortars made from natural aggregate and without fibers.
It's possible the complete substitution of natural by recycled aggregates in mortars.• Addition of orientated fibers improves the mechanical properties of cement mortars. • A magnetic system has been developed to orientate steel fibers in cement mortars. • It's possible to qualify magnetically the quantity of fibers orientates in mortars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.