Different linearizations have been proposed to cast dependency parsing as sequence labeling and solve the task as: (i) a head selection problem, (ii) finding a representation of the token arcs as bracket strings, or (iii) associating partial transition sequences of a transition-based parser to words. Yet, there is little understanding about how these linearizations behave in low-resource setups. Here, we first study their data efficiency, simulating data-restricted setups from a diverse set of rich-resource treebanks. Second, we test whether such differences manifest in truly low-resource setups. The results show that head selection encodings are more data-efficient and perform better in an ideal (gold) framework, but that such advantage greatly vanishes in favour of bracketing formats when the running setup resembles a real-world low-resource configuration.
We propose a morphology-based method for low-resource (LR) dependency parsing. We train a morphological inflector for target LR languages, and apply it to related rich-resource (RR) treebanks to create cross-lingual (xinflected) treebanks that resemble the target LR language. We use such inflected treebanks to train parsers in zero-(training on x-inflected treebanks) and few-shot (training on x-inflected and target language treebanks) setups. The results show that the method sometimes improves the baselines, but not consistently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.