Benzoxazinoids have been described as important allelochemicals from Gramineae as well as Acanthaceae, Rannunculaceae, and Scrophulariaceae plants. Several bioactivities have been described and evaluated for these compounds, including fungistatic, antifeedant, and phytotoxic. In ongoing studies about allelochemicals as natural herbicide models, the description of soil dynamics in phytotoxic agents has high importance, because the possible biotransformations developed by soil microorganisms could yield compounds with modified biological properties, affecting the overall allelopathic capability of the producer plant in a direct manner. Thus, a complete degradation study has been carried out for 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxybenzoxazolin-2(3H)-one (MBOA) in two soils cultivated with Triticum aestivum L. varieties (cv. Astron and cv. Ritmo). The main purpose was to identify degradation products and to elucidate biotransformation dynamics. Results show DIMBOA to degrade rapidly, yielding MBOA in both studied soils at different doses (t 1/2 ) 31 ( 1 h, n ) 12) and reaching high conversions (80 ( 4 h, n ) 42). MBOA, an intermediate in the degradation pathway from DIMBOA to 2-amino-7-methoxy-3H-phenoxazin-3-one (AMPO), was more resistant toward biodegradation (t 1/2 ) 5 ( 1 days, n ) 6). MBOA showed maximum conversions at a dose of 250 mg/kg of soil (36 ( 3 days, n ) 6). Soil belonging to T. aestivum cv. Ritmo crops showed higher degradation capacity than cv. Astron soil. AMPO was the final degradation product observed for DIMBOA in the soils and experimental conditions selected. Consequences for activity and stability of these compounds in relation to allelopathy are discussed.
Benzoxazinones 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) have been considered key compounds for understanding allelopathic phenomena in Gramineae crop plants such as corn (Zea mays L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.). The degradation processes in the environment observed for these compounds, in which soil microbes are directly involved, could affect potential allelopathic activity of these plants. We present in this work a complete structure-activity relationships study based on the phytotoxic effects observed for DIMBOA, DIBOA, and their main degradation products, in addition to several synthetic analogues of them. Their effects were evaluated on standard target species (STS), which include Triticum aestivum L. . They showed high inhibitory activity over almost all species growth. The fact that APO is a degradation product from DIBOA with high phytotoxicity and stability makes it possible to assign an important ecological role regarding plant defense mechanisms. 2-Deoxy derivatives of natural benzoxazinones display a wide range of activities that allow proposing them as new leads for natural herbicide models with a 1,4-benzoxazine skeleton.
Wheat (Triticum aestivum L.) has been found to possess allelopathic potential and studies have been conduced to apply wheat allelopathy for biological weed control. 2,4-Dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) is a common product found in wheat, corn, and rye exudates and it can be released to the environment by that way. In this report, the stability of DIBOA is studied in two soils from crop lands of wheat cv. Astron and cv. Ritmo. These varieties were selected by their concentrations of DIBOA and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) from aerial parts and by the bioactivities of their aqueous extracts in the growth of wheat coleoptile sections. The degradation rate of DIBOA in these soils was measured in laboratory tests during 90 h by high-pressure liquid chromatography methods. These analyses demonstrate that DIBOA was transformed primarily into 2-benzoxazolinone (BOA). This transformation was similar in both soil types with an average half-life of 43 h. The degradation studies for BOA show its biotransformation to 2-aminophenoxazin-3-one (APO) with a half-life of 2.5 days. Therefore, BOA is an intermediate product in the biotransformation from DIBOA to APO in these wheat crop soils and is consistent with previous findings. APO was not degraded after three months in soil, suggesting that its degradation rate in soil is very slow.KEYWORDS: Benzoxazinoids; DIBOA-Glc; DIBOA, BOA; biodegradations; soil; Triticum aestivum; bioactivity INTRODUCTIONSome cereal plants produce a series of benzoxazinoid compounds (cyclic hydroxamic acids). The number of this group of natural products is small (1), but they possess diverse biological activities. These compounds are involved in the defense of plants against fungi (2) and insects (3) as well as in allelopathic interactions (4,5). The most important benzoxazinoids reported (Figure 1) are 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), which are present in wheat, maize, and rye and have been found in members of families Acanthaceae, Rannunculaceae, and Scrophulariaceae (6). These compounds are present as glycosides (Figure 1) in plants, being released as aglycones by the activity of the enzyme -glucosidase (7,8).Moreover, these aglycones are unstable in solution and soil, being transformed to 2-benzoxazolinone (BOA), 7-methoxy-2-benzoxazolinone (MBOA), and other degradation products (1) (Figure 1). These transformations depend on the chemical and biological conditions. Some of these transformation products are more biologically active than the original ones (9).Transport of allelochemicals to the soil can occur mainly by leaching of the foliar parts (10, 11), exudation from root (12), decomposition of plant residues by microbial action (13), or by direct transformation by microbes associated to the roots (14).Previous publications have dealt with the isolation, characterization, and biological activity of the degradation products (15-17). However, the dynamic aspects of...
Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass) are highly problematic weeds affecting a wide variety of cereal crops worldwide. The fact that both of these weeds have developed resistance to several herbicide groups made them optimal candidates as target organisms for ongoing research about the potential application of allelochemicals and analogue compounds as natural herbicide models. Benzoxazinones, a family of natural allelochemicals present in corn, wheat, and rye, including 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, together with some degradation products, found in crop soils as well as in other systems, and some synthetic analogues of them were tested on wild oat and rigid ryegrass seeds; the results were statistically treated, and some structure-activity relationships, useful in further development of natural herbicide models, were elucidated. The most active compounds were the synthetic benzoxazinone 2-acetoxy-(2H)-1,4-benzoxazin-3(4H)-one and the degradation product 2-aminophenoxazin-3-one, with highly significant inhibition on the development of both weeds. The ecological role of these compounds is discussed by considering both degradability and phytotoxicity. The bioactivity of aminophenoxazines has been correlated by their aqueous solubility-lipophilicity predicted by means of computational methods.
Compounds of the (2H)-1,4-benzoxazin-3(4H)-one class have attracted the attention of phytochemists since the first isolation of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA). Extensive research has been carried out on the isolation and synthesis of these materials as well as on the dynamics of their degradation in different systems. This has led to the discovery of a wide variety of compounds that are of high interest from the point of view of phytotoxic, antifungal, antimicrobial, and antifeedant effects among others. The potential application of benzoxazinones and their derivatives as leads for natural herbicide models is a topic of current interest. Furthermore, the importance of degradation on the ecological behaviour of benzoxazinone-producing plants is also being realised, and proposals concerning the role of the degradation products in chemical defence mechanisms have been put forward. There is also increasing interest in the improvement of analytical methodologies, and ecotoxicologic effects, toxicity on target and non-target organisms, and degradation kinetics are also being addressed. The development of new phytotoxicity bioassay techniques represents one of the most important breakthroughs in this respect. Moreover, benzoxazinones and some of their derivatives have been employed in the development of pharmaceuticals. The versatility of the benzoxazinone skeleton, in addition to its relative chemical simplicity and accessibility, makes these chemicals amongst the most promising sources of bioactive compounds that are natural in origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.