In this work, for the first time, snail slime from garden snails “Helix Aspersa Müller”, has been used to induce the formation of eco-friendly gold nanoparticles (AuNPs-SS), suitable for biomedical...
Pistacia lentiscus shows a long range of biological activities, and it has been used in traditional medicine for treatment of various kinds of diseases. Moreover, related essential oil keeps important health-promoting properties. However, less is known about P. lentiscus hydrosol, a main by-product of essential oil production, usually used for steam distillation itself or discarded. In this work, by using ultra-high-resolution ESI(+)-FT-ICR mass spectrometry, a direct identification of four main classes of metabolites of P. lentiscus hydrosol (i.e., terpenes, amino acids, peptides, and condensed heterocycles) was obtained. Remarkably, P. lentiscus hydrosol exhibited an anti-inflammatory activity by suppressing the secretion of IL-1β, IL-6, and TNF-α proinflammatory cytokines in lipopolysaccharide- (LPS-) activated primary human monocytes. In LPS-triggered U937 cells, it inhibited NF-κB, a key transcription factor in inflammatory cascade, regulating the expression of both the mitochondrial citrate carrier and the ATP citrate lyase genes. These two main components of the citrate pathway were downregulated by P. lentiscus hydrosol. Therefore, the levels of ROS, NO, and PGE2, the inflammatory mediators downstream the citrate pathway, were reduced. Results shed light on metabolic profile and anti-inflammatory properties of P. lentiscus hydrosol, suggesting its potential as a therapeutic agent.
Rationale
The anionic surfactants, among which are alkyl ether sulfates (AESs), are the most used class of surfactants in cleansing applications. The negatively charged head group of AESs is a sulfate moiety linked with a variable number of ethylene oxide units, i.e. a polyethylene glycol chain. The hydrophobic part of an AES is constituted by a linear alkyl chain of carbon atoms, generally obtained from natural fatty acids. Coconut oil fatty acids, including the sodium salts of coceth sulfate (CES) with chemical formula CxHy (OCH2CH2)nOSO3Na, are widely used as feedstock for AESs synthesis. CES is added to many cleaning products and detergents defined as non‐aggressive. Currently, no detailed structural information concerning the alkyl chain length x and, more importantly, the degree of ethoxylation n has been reported.
Methods
A commercial standard solution of CES was characterized by tandem mass spectrometry, employing direct injection into the electrospray ionization (ESI) source of a a linear quadrupole ion trap mass spectrometer.
Results
Two series of oligomeric species, characterized by a C12 and C14 alkyl chains, i.e. [C12H25(OCH2CH2)nOSO3]− and [C14H29(OCH2CH2)nOSO3]− with n ranging from 0 to 7, were successfully identified. The interpretation of these data was very useful for CES identification in three commercial dishwasher cleaning products.
Conclusions
Direct injection MS/MS analysis of CES revealed a well‐defined molecular weight distribution and allowed the alkyl chain composition and the number of ethylene oxide units to be to identified.
Chronic wounds result from the failure of the normal wound healing process. Any delay during the tissue repair process could be defined as chronic wound healing, potentially having a highly detrimental impact on human health. To face this problem, in the last years, the use of different technologies alternative to therapeutic agents is gaining more attention. The Helix aspersa snail slime‐based products are increasingly being used for skin injury, thanks to their ability to make tissue repair processes faster. To date, a comprehensive overview of pure snail slime metabolome is not available. Besides, Au nanoparticles (AuNPs) technology is spreading rapidly in the medical environment, and the search for AuNPs “green” synthetic routes that involve natural products as precursor agents is demanded, alongside with a deep comprehension of the kind of species that actively take part in synthesis and product stabilization. The aim of this work is to characterize the metabolic profile of a pure snail slime sample, by an untargeted high‐resolution mass spectrometry‐based analysis. In addition, insights on AuNPs synthesis and stabilization by the main components of pure snail slime used to induce the synthesis were obtained. The untargeted analysis provided a large list of important classes of metabolites, that is, fatty acid derivatives, amino acids and peptides, carbohydrates and polyphenolic compounds that could be appreciated in both samples of slime, with and without AuNPs. Moreover, a direct comparison of the obtained results suggests that mostly nitrogen and sulfur‐bearing metabolites take part in the synthesis and stabilization of AuNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.