Understanding hemodynamics in blood circulation is crucial in order to unveil the mechanisms underlying the formation of stenosis and atherosclerosis. In fact, there are experimental evidences pointing out to the existence of some given vessel configurations that are more likely to develop the above mentioned pathologies. Along this manuscript, we performed an exhaustive investigation in a simplified model aiming to characterize by means of physical quantities those regions and configurations in vessel bifurcations that are more likely to develop such pathologies. The two-fold analysis is based, on the one hand, on numerical simulations (via CFD) and, on the other hand, on experiments realized in an ad-hoc designed polydimethylsiloxane (PDMS) channel with the appropriate parameters and appropriate fluid flows. The results obtained demonstrate that low velocity regions and low shear stress zones are located in the outer walls of bifurcations. In fact, we found that there is a critical range of bifurcation angles that is more likely to vascular disease than the others in correspondence with some experimental evidence. The effect of the inflow velocity on this critical range is also analyzed.
Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.
Diabetes is associated with a high mortality rate due to vascular complications. Chronic hyperglycemia in diabetes leads to enhanced oxidative stress and glycation. Here, we explored the impact of glycation on human erythrocyte characteristics and capacity to affect endothelial cell function following erythrophagocytosis. Native and glucose-mediated glycated erythrocytes were prepared and characterized in terms of structural and deformability modifications. Erythrocyte preparations were tested for their binding and phagocytosis capacity as well as the potential functional consequences on human endothelial cell lines and primary cultures. Oxidative modifications were found to be enhanced in glycated erythrocytes after determination of their deformability, advanced glycation end-product content and eryptosis. Erythrophagocytosis by endothelial cells was significantly increased when incubated in the presence of glycated erythrocytes. In addition, higher iron accumulation, oxidative stress and impaired endothelial cell permeability were evidenced in cells previously incubated with glycated erythrocytes. When cultured under flow conditions, cellular integrity was disrupted by glycated erythrocytes at microvessel bifurcations, areas particularly prone to vascular complications. This study provides important new data on the impact of glycation on the structure of erythrocytes and their ability to alter endothelial cell function. Increased erythrophagocytosis may have a deleterious impact on endothelial cell function with adverse consequences on diabetic vascular complications.
Since the airborne transmission of SARS-CoV-2 is the key in the spread of COVID-19, the interest in the quality of the air in enclosed spaces has become utmost importance. Natural ventilation is the first obvious option to improve epidemiological security, and general rules have been widely disseminated. Nevertheless, the changes in weather conditions greatly limit the validity of such rules. Here we present a system that, upon the introduction of basic parameters of a given space, its volume, location, orientation, architectural environment and average occupancy, yields optimized ventilation times on the basis of wind meteorological forecasts. It has been successfully implemented in the educative system of the Autonomous Community of Galicia (northwest Spain) and it is currently operative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.