Extracellular matrix (ECM) is a dynamic 3‐dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell‐bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well‐organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.
The effects of metabolism on the control of hyaluronan synthesis both in healthy and pathologic conditions are critical and still not completely understood. The hyaluronan capacity to bind several receptors triggering specific pathways may represent a valid target for new approach in several therapeutic strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Hyaluronan, a ubiquitous high‐molecular‐mass glycinoglycan on cell surfaces and in extracellular matrices, has a number of specific signaling functions in cell–cell communication. Changes in its content, molecular mass and turnover rate are crucial for cell proliferation, migration and apoptosis, processes that control tissue remodeling during embryonic development, inflammation, injury and cancer. To maintain tissue homeostasis, the synthesis of hyaluronan must therefore be tightly controlled. In this review, we highlight some recent data on the transcriptional regulation of hyaluronan synthase (Has1–3) expression and on the post‐transcriptional control of hyaluronan synthase activity, which, in close association with the supply of the UDP‐sugar substrates of hyaluronan synthase, adjust the rate of hyaluronan synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.