The selection of a suitable document representation approach plays a crucial role in the performance of a document clustering task. Being able to pick out representative words within a document can lead to substantial improvements in document clustering. In the case of web documents, the HTML markup that defines the layout of the content provides additional structural information that can be further exploited to identify representative words. In this paper we introduce a fuzzy term weighing approach that makes the most of the HTML structure for document clustering. We set forth and build on the hypothesis that a good representation can take advantage of how humans skim through documents to extract the most representative words. The authors of web pages make use of HTML tags to convey the most important message of a web page through page elements that attract the readers' attention, such as page titles or emphasized elements. We define a set of criteria to exploit the information provided by these page elements, and introduce a fuzzy combination of these criteria that we evaluate within the context of a web page clustering task. Our proposed approach, called Abstract Fuzzy Combination of Criteria (AFCC), can adapt to datasets whose features are distributed differently, achieving good results compared to other similar fuzzy logic based approaches and TF-IDF across different datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.