Localization of the subjective vertical during body tilt in pitch and in roll has been extensively studied because of the relevance of these axes for aviation and control of posture. Studies of yaw orientation relative to gravity are lacking. Our goal was to perform the first thorough evaluation of static orientation in recumbent yaw and to collect as efficiently as possible roll and pitch orientation data which would be consistent with the literature, using the same technique as our yaw tests. This would create the first comprehensive, coherent data set for all three axes suitable for quantitative tri-dimensional modeling of spatial orientation. We tested localization of the vertical for subjects tilted in pitch (-100 degrees to +130 degrees ), in roll (-90 degrees to +90 degrees ), and in yaw while recumbent (-80 degrees to +80 degrees ). We had subjects point a gravity-neutral probe to the gravitational vertical (haptically indicated vertical) and report verbally their perceived tilt. Subjects underestimated their body tilts in recumbent yaw and pitch and overestimated their tilts in roll. The haptic settings for pitch and roll were consistent with data in the literature obtained with haptic and visual indications. Our data constitute the first tri-dimensional assessment of the subjective vertical using a common measurement procedure and provide the basis for the tri-axial modeling of vestibular function presented in the companion paper.
We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired individuals with limited kinematic repeatability. In contrast with previous dynamic stiffness studies, we found that stiffness varies during movement, achieving levels higher than during static postural control. High stiffness was associated with elevated reflexive activity. We observed a decrease in stiffness and a marked reduction in long-latency reflexes around the reaching movement velocity peak. This pattern could partly explain the difference between the high stiffness reported in postural studies and the low stiffness measured in dynamic estimation studies, where perturbations are typically applied near the peak velocity point.
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
Experimental results presented in the literature suggest that humans use a position control strategy to indirectly control force rather than direct force control. Modeling the muscle-tendon system as a third-order linear model, we provide an explanation of why an indirect force control strategy is preferred. We analyzed a third-order muscle system and verified that it is required for a faithful representation of muscle-tendon mechanics, especially when investigating critical damping conditions. We provided numerical examples using biomechanical properties of muscles and tendons reported in the literature. We demonstrated that at maximum isotonic contraction, for muscle and tendon stiffness within physiologically compatible ranges, a third-order muscle-tendon system can be under-damped. Over-damping occurs for values of the damping coefficient included within a finite interval defined by two separate critical limits (such interval is a semiinfinite region in second-order models). An increase in damping beyond the larger critical value would lead the system to mechanical instability. We proved the existence of a theoretical threshold for the ratio between tendon and muscle stiffness above which critical damping can never be achieved; thus resulting in an oscillatory free response of the system, independently of the value of the damping. Under such condition, combined with high muscle activation, oscillation of the system can be compensated only by active control.
Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.