Hypopigmentation disorders that are associated with immunodeficiency feature both partial albinism of hair, skin and eyes together with leukocyte defects. These disorders include Chediak Higashi (CHS), Griscelli (GS), Hermansky-Pudlak (HPS) and MAPBP-interacting protein deficiency syndromes. These are heterogeneous autosomal recessive conditions in which the causal genes encode proteins with specific roles in the biogenesis, function and trafficking of secretory lysosomes. In certain specialized cells, these organelles serve as a storage compartment. Impaired secretion of specific effector proteins from that intracellular compartment affects biological activities. In particular, these intracellular granules are essential constituents of melanocytes, platelets, granulocytes, cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Thus, abnormalities affect pigmentation, primary hemostasis, blood cell counts and lymphocyte cytotoxic activity against microbial pathogens. Among eight genetically distinct types of HPS, only type 2 is characterized by immunodeficiency. Recently, a new subtype, HPS9, was defined in patients presenting with immunodeficiency and oculocutaneous albinism, associated with mutations in the pallidin-encoding gene, PLDN.Hypopigmentation together with recurrent childhood bacterial or viral infections suggests syndromic albinism. T and NK cell cytotoxicity are generally impaired in patients with these disorders. Specific clinical and biochemical phenotypes can allow differential diagnoses among these disorders before molecular testing. Ocular symptoms, including nystagmus, that are usually evident at birth, are common in patients with HPS2 or CHS. Albinism with short stature is unique to MAPBP-interacting protein (MAPBPIP) deficiency, while hemophagocytic lymphohistiocytosis (HLH) mainly suggests a diagnosis of CHS or GS type 2 (GS2). Neurological disease is a long-term complication of CHS, but is uncommon in other syndromic albinism. Chronic neutropenia is a feature of HPS2 and MAPBPIP-deficiency syndrome, whereas it is usually transient in CHS and GS2. In every patient, an accurate diagnosis is required for prompt and appropriate treatment, particularly in patients who develop HLH or in whom bone marrow transplant is required. This review describes the molecular and pathogenetic mechanisms of these diseases, focusing on clinical and biochemical aspects that allow early differential diagnosis.
BackgroundRecently, a growing number of novel genetic defects underlying primary immunodeficiencies (PIDs) have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS) technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome.ObjectiveTo evaluate the role of targeted NGS and whole exome sequencing (WES) in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures.MethodsWe retrospectively analyzed genetic variants identified through targeted NGS or WES in 45 patients with complex PID of unknown etiology.ResultsForty-seven variants were identified using targeted NGS, while 5 were identified using WES. Newly identified genetic variants were classified into four groups: (I) variations associated with a well-defined PID, (II) variations associated with atypical features of a well-defined PID, (III) functionally relevant variations potentially involved in the immunological features, and (IV) non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%). Among them, four patients presented with a typical well-defined PID. In the remaining three cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder.ConclusionNGS technologies represent a cost-effective and rapid first-line genetic approach for the evaluation of complex PIDs. WES, despite a moderate higher cost compared to targeted, is emerging as a valuable tool to reach in a timely manner, a PID diagnosis with a considerable potential to draw genotype–phenotype correlation. Nevertheless, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants might be proven informative in future studies with larger cohorts of patients.
As lymphatic endothelial cells (LECs) express different lymphatic and vascular markers depending on the organ they are derived from, we analysed whether they also show a heterogeneity of response against pathogens. To this end we analysed, for the presence of mRNA encoding for all human toll-like receptor (TLR), LECs isolated from lymph nodes and thymuses. RNA for TLR1-6 and 9 was identified in thymus-derived cells, whereas cells derived from lymph nodes contained mRNA for TLR1-4, 6 and 9, but failed to express mRNA specific for TLR5. The differential expression of TLRs was confirmed by the phosphorylation of nuclear factor-jB p65 only when the two types of LECs were incubated with the appropriate TLR agonists. The stimulation with specific agonists gives rise to a heterogeneous pattern of cytokine and chemokine secretion: thymus-derived LECs produced preferentially interleukin-6, interferon-inducible protein (IP)-10 and tumour necrosis factor-a, whereas cells prepared from lymph nodes mainly released interleukin-8, monocyte chemotactic protein-1, RANTES and (IP)-10. Finally, cells purified from lymph nodes expressed a higher level of intercellular adhesion molecule-1 than did cells prepared from the thymus when stimulated with several TLR agonists. The expression of a large set of TLRs and the responsiveness to specific agonists suggest that LECs are able to respond to pathogens, and the observed differences reflect specialized functions, redundancy and/or roles of LECs of different origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.