Abstract-Opportunistic spectrum access creates the opening of under-utilized portions of the licensed spectrum for reuse, provided that the transmissions of secondary radios do not cause harmful interference to primary users. Such a system would require secondary users to be cognitive-they must accurately detect and rapidly react to varying spectrum usage. Therefore, it is important to characterize the effect of cognitive network interference due to such secondary spectrum reuse. In this paper, we propose a new statistical model for aggregate interference of a cognitive network, which accounts for the sensing procedure, secondary spatial reuse protocol, and environment-dependent conditions such as path loss, shadowing, and channel fading. We first derive the characteristic function and cumulants of the cognitive network interference at a primary user. Using the theory of truncated-stable distributions, we then develop the statistical model for the cognitive network interference. We further extend this model to include the effect of power control and demonstrate the use of our model in evaluating the system performance of cognitive networks. Numerical results show the effectiveness of our model for capturing the statistical behavior of the cognitive network interference. This work provides essential understanding of interference for successful deployment of future cognitive networks.
At present, operators address the explosive growth of mobile data demand by densification of the cellular network so as to reduce the transmitter-receiver distance and to achieve higher spectral efficiency. Due to such network densification and the intense proliferation of wireless devices, modern wireless networks are interference-limited, which motivates the use of interference mitigation and coordination techniques. In this work, we develop a statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points (APs) and mobile users, and the characteristics of the wireless propagation channel. We explicitly model the consecutive events of canceling interferers and we derive the success probability to cancel the n-th strongest signal and to decode the signal of interest after n cancellations. When users are connected to the AP which provides the maximum average received signal power, the analysis indicates that the performance gains of SIC diminish quickly with n and the benefits are modest for realistic values of the signal-to-interference ration (SIR). We extend the statistical model to include several association policies where distinct gains of SIC are expected: (i) maximum instantaneous SIR association, (ii) minimum load association, and (iii) range expansion. Numerical results show the effectiveness of SIC for the considered association policies. This work deepens the understanding of SIC by defining the achievable gains for different association policies in multi-tier heterogeneous networks.
Heterogeneous networks using a mix of macrocells and small cells are foreseen as one of the solutions to meet the ever increasing mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy consumption. Spurred by growing environmental awareness and the high price of energy, it is crucial to design energy efficient wireless systems for both macrocells and small cells. In this work, we evaluate a distributed sleep-mode strategy for cognitive SAPs and we analyze the trade-off between traffic offloading from the macrocell and the energy consumption of the small cells. Using tools from stochastic geometry, we define the user discovery performance of the SAP and derive the uplink capacity of the small cells located in the Voronoi cell of a macrocell base station, accounting for the uncertainties associated with random position, density, user activity, propagation channel, network interference generated by uncoordinated activity, and the sensing scheme. In addition, we define a fundamental limit on the interference density that allows robust detection and we elucidate the relation between energy efficiency and sensing time using large deviations theory. Through the formulation of several optimization problems, we propose a framework that yields design guidelines for energy efficient small cell networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.