The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host’s vasculature.
We present a new strategy for the fabrication of artificial skeletal muscle tissue with functional morphologies based on an innovative 3D bioprinting approach. The methodology is based on a microfluidic printing head coupled to a co-axial needle extruder for high-resolution 3D bioprinting of hydrogel fibers laden with muscle precursor cells (C2C12). To promote myogenic differentiation, we formulated a tailored bioink with a photocurable semi-synthetic biopolymer (PEG-Fibrinogen) encapsulating cells into 3D constructs composed of aligned hydrogel fibers. After 3-5 days of culture, the encapsulated myoblasts started migrating and fusing, forming multinucleated myotubes within the 3D bioprinted fibers. The obtained myotubes showed high degree of alignment along the direction of hydrogel fiber deposition, further revealing maturation, sarcomerogenesis, and functionality. Following subcutaneous implantation in the back of immunocompromised mice, bioprinted constructs generated organized artificial muscle tissue in vivo. Finally, we demonstrate that our microfluidic printing head allows to design three dimensional multi-cellular assemblies with an exquisite compartmentalization of the encapsulated cells. Our results demonstrate an enhanced myogenic differentiation with the formation of parallel aligned long-range myotubes. The approach that we report here represents a robust and valid candidate for the fabrication of macroscopic artificial muscle to scale up skeletal muscle tissue engineering for human clinical application.
Background and AimNonalcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to cirrhosis, eventually leading to hepatocellular carcinoma (HCC). HCC ranks as the third highest cause of cancer-related death globally, requiring an early diagnosis of NAFLD as a potential risk factor. However, the molecular mechanisms underlying NAFLD are still under investigation. So far, many in vitro studies on NAFLD have been hampered by the limitations of 2D culture systems, in which cells rapidly lose tissue-specific functions. The present liver-on-a-chip approach aims at filling the gap between conventional in vitro models, often scarcely predictive of in vivo conditions, and animal models, potentially biased by their xenogeneic nature.MethodsHepG2 cells were cultured into a microfluidically perfused device under free fatty acid (FFA) supplementation, namely palmitic and oleic acid, for 24h and 48h. The device mimicked the endothelial-parenchymal interface of a liver sinusoid, allowing the diffusion of nutrients and removal of waste products similar to the hepatic microvasculature. Assessment of intracellular lipid accumulation, cell viability/cytotoxicity and oxidative stress due to the FFA overload, was performed by high-content analysis methodologies using fluorescence-based functional probes.ResultsThe chip enables gradual and lower intracellular lipid accumulation, higher hepatic cell viability and minimal oxidative stress in microfluidic dynamic vs. 2D static cultures, thus mimicking the chronic condition of steatosis observed in vivo more closely.ConclusionsOverall, the liver-on-a-chip system provides a suitable culture microenvironment, representing a more reliable model compared to 2D cultures for investigating NAFLD pathogenesis. Hence, our system is amongst the first in vitro models of human NAFLD developed within a microfluidic device in a sinusoid-like fashion, endowing a more permissive tissue-like microenvironment for long-term culture of hepatic cells than conventional 2D static cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.