In this article, we exploit and generalize the K-shortest EFM algorithm to determine a subset of EFMs in a human genome-scale metabolic network. This subset of EFMs involves a wide number of reported human metabolic pathways, as well as potential novel routes, and constitutes a valuable database where high-throughput data can be mapped and contextualized from a metabolic perspective. To illustrate this, we took expression data of 10 healthy human tissues from a previous study and predicted their characteristic EFMs based on enrichment analysis. We used a multivariate hypergeometric test and showed that it leads to more biologically meaningful results than standard hypergeometric. Finally, a biological discussion on the characteristic EFMs obtained in liver is conducted, finding a high level of agreement when compared with the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.