Within the Industrial Internet of Things (IIoT) scenario, the online availability of a growing number of assets in factories enables the collection of vast amounts of data. Each asset produces time-series collections that must be handled with proper techniques while providing effective ingestion and retrieval performance in complex architectures, maintaining compliance with company and infrastructure boundaries. In this paper, we describe an experience in the management of massive time-series, conducted in a plant of Avio Aero. Firstly, we propose a fog-based architecture to ease the collection and analysis of these massive datasets. Then, we present the results of an empirical comparison of four DBMSs (PostgreSQL, Cassandra, MongoDB, and InfluxDB) in the ingestion and retrieval of gigabytes of real IIoT data. In particular, we tested different DBMS features under different types of queries. Results show that InfluxDB provides very good performance, but PostgreSQL can still be an interesting alternative.
Within the Industrial Internet of Things (IIoT) scenario, the online availability of a growing number of assets in factories enables the collection of vast amounts of data. Each asset produces time-series collections that must be handled with proper techniques while providing effective ingestion and retrieval performance in complex architectures, maintaining compliance with company and infrastructure boundaries. In this paper, we describe an experience in the management of massive time-series, conducted in a plant of Avio Aero. Firstly, we propose a fog-based architecture to ease the collection and analysis of these massive datasets. Then, we present the results of an empirical comparison of four DBMSs (PostgreSQL, Cassandra, MongoDB, and InfluxDB) in the ingestion and retrieval of gigabytes of real IIoT data. In particular, we tested different DBMS features under different types of queries. Results show that InfluxDB provides very good performance, but PostgreSQL can still be an interesting alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.