Markarian 501 is a high-peaked BL Lacertae object and has undergone many major outbursts since its discovery in 1996. As a part of the multiwavelength campaign, in the year 2009 this blazar was observed for 4.5 months from March 9 to August 1 and during the period April 17 to May 5 it was observed by both space and ground based observatories covering the entire electromagnetic spectrum. A very strong high energy γ -ray flare was observed on May 1 by Whipple telescope in the energy range 317 GeV to 5 TeV and the flux was about 10 times higher than the average baseline flux. Previously during 1997 Markarian 501 had undergone another long outburst, which was observed by HEGRA telescopes and the energy spectrum was well beyond 10 TeV. The photohadronic model complemented by the extragalactic background radiation (EBL) correction fits well with the flares data observed by both Whipple and HEGRA. Our model predicts a steeper slope of the energy spectrum beyond 10 TeV, which is compatible with the improved analysis of the HEGRA data.
Markarian 421 is a high-peaked BL Lac object and it has undergone many strong outbursts since its discovery as a TeV source in 1992. Markarian 421 has been studied intensively and was observed by various Cherenkov telescope arrays ever since. The outbursts of April 2004 observed by the Whipple telescope and of February 2010 by the HESS telescopes are explained well in this work by using the photohadronic model. To account for the attenuation of these highenergy gamma-rays by the extragalactic background light (EBL), we use template EBL models. The intrinsic spectrum of each epoch is different even though the high-energy protons have almost the same spectral index. We observe that this difference in intrinsic spectra is due to the change in the spectral index of the low-energy tail of the synchrotron self Compton (SSC) photons during different epochs of flaring. Our results show that the contemporaneous multiwavelength observations, particularly in the low-energy tail region of the SSC emission of the source, are important in explaining the flaring phenomenon.
The extraordinary multi-TeV flare from 1ES 1011+496 during February-March 2014 was observed by the MAGIC telescopes for 17 nights and the average spectrum of the whole period has a non-trivial shape. We have used the photohadronic model and a template extragalactic background light model to explain the average spectrum which fits the flare data well. The spectral index α is the only free parameter in our model. We have also shown that the non-trivial nature of the spectrum is due to the change in the behavior of the optical depth above ∼ 600 GeV γ -ray energy accompanied with the high SSC flux. This corresponds to an almost flat intrinsic flux for the multi-TeV γ -rays. Our model prediction can constrain the SSC flux of the leptonic models in the quiescent state.
Recently the ANTARES collaboration presented a time dependent analysis of a selected number of flaring blazars to look for upward going muon events produced from the charge current interaction of the muon neutrinos. We use the same list of flaring blazars to look for a possible positional correlation with the IceCube neutrino events. In the context of the photohadronic model we propose that the neutrinos are produced within the nuclear region of the blazar where Fermi accelerated high energy protons interact with the background synchrotron/SSC photons. Although we found that some objects from the ANTARES list are within the error circles of a few IceCube events, the statistical analysis shows that none of these sources have a significant correlation.
Very-High Energy (VHE) gamma-ray astroparticle physics is a relatively young field, and observations over the past decade have surprisingly revealed almost two hundred VHE emitters which appear to act as cosmic particle accelerators. These sources are an important component of the Universe, influencing the evolution of stars and galaxies. At the same time, they also act as a probe of physics in the most extreme environments known -such as in supernova explosions, and around or after the merging of black holes and neutron stars. However, the existing experiments have provided exciting glimpses, but often falling short of supplying the full answer. A deeper understanding of the TeV sky requires a significant improvement in sensitivity at TeV energies, a wider energy coverage from tens of GeV to hundreds of TeV and a much better angular and energy resolution with respect to the currently running facilities. The next generation gamma-ray observatory, the Cherenkov Telescope Array Observatory (CTAO), is the answer to this need. In this talk I will present this upcoming observatory from its design to the construction, and its potential science exploitation. CTAO will allow the entire astronomical community to explore a new discovery space that will likely lead to paradigm-changing breakthroughs. In particular, CTA has an unprecedented sensitivity to short (sub-minute) timescale phenomena, placing it as a key instrument in the future of multi-messenger and multi-wavelength time domain astronomy. I will conclude the talk presenting the first scientific results obtained by the LST-1, the prototype of one CTA telescope type -the Large Sized Telescope, that is currently under commission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.