ObjectivesSafety, tolerability, pharmacokinetics, and pharmacodynamics of a novel β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor, JNJ-54861911, were assessed after single and multiple dosing in healthy participants.MethodsTwo randomized, placebo-controlled, double-blind studies were performed using single and multiple ascending JNJ-54861911 doses (up to 14 days) in young and elderly healthy participants. Regular blood samples and frequent CSF samples, up to 36 hours after last dose, were collected to assess the pharmacokinetic and pharmacodynamic (Aβ, sAPPα,β,total levels) profiles of JNJ-54861911.ResultsJNJ-54861911 was well-tolerated, adverse events were uncommon and unrelated to JNJ-54861911. JNJ-54861911 showed dose-proportional CSF and plasma pharmacokinetic profiles. Plasma- and CSF-Aβ and CSF-sAPPβ were reduced in a dose-dependent manner. Aβ reductions (up to 95%) outlasted exposure to JNJ-54861911. APOE ε4 carrier status and baseline Aβ levels did not influence Aβ/sAPPβ reductions.ConclusionJNJ-54861911, a potent brain-penetrant BACE1 inhibitor, achieved high and stable Aβ reductions after single and multiple dosing in healthy participants.
Backgroundβ-Secretase enzyme (BACE) inhibition has been proposed as a priority treatment mechanism for Alzheimer’s disease (AD), but treatment initiation may need to be very early. We present proof of mechanism of atabecestat (also known as JNJ-54861911), an oral BACE inhibitor for the treatment of AD, in Caucasian and Japanese populations with early AD who do not show signs of dementia.MethodsIn two similarly designed phase I studies, a sample of amyloid-positive elderly patients comprising 45 Caucasian patients with early AD diagnosed as preclinical AD (n = 15, Clinical Dementia Rating [CDR] = 0) or with mild cognitive impairment due to AD (n = 30, CDR = 0.5) and 18 Japanese patients diagnosed as preclinical AD (CDR-J = 0) were randomized 1:1:1 to atabecestat 10 or 50 mg or placebo (n = 6–8/treatment) daily for 4 weeks. Safety, pharmacokinetics (PK), and pharmacodynamics (PD) (i.e., reduction of cerebrospinal fluid [CSF] amyloid beta 1–40 [Aβ1–40] levels [primary endpoint] and effect on other AD biomarkers) of atabecestat were evaluated.ResultsIn both populations, atabecestat was well tolerated and characterized by linear PK and high central nervous system penetrance of unbound drug. Atabecestat significantly reduced CSF Aβ1–40 levels from baseline at day 28 in both the 10-mg (67–68%) and 50-mg (87–90%) dose groups compared with placebo. For Caucasians with early AD, the least squares mean differences (95% CI) were − 69.37 (− 72.25; − 61.50) and − 92.74 (− 100.08; − 85.39), and for Japanese with preclinical AD, they were − 62.48 (− 78.32; − 46.64) and − 80.81 (− 96.13; − 65.49), respectively. PK/PD model simulations confirmed that once-daily 10 mg and 50 mg atabecestat can attain 60–70% and 90% Aβ1–40 reductions, respectively. The trend of the reduction was similar across the Aβ1–37, Aβ1–38, and Aβ1–42 fragments in both atabecestat dose groups, consistent with Aβ1–40. CSF amyloid precursor protein fragment (sAPPβ) levels declined from baseline, regardless of patient population, whereas CSF sAPPα levels increased compared with placebo. There were no relevant changes in either CSF total tau or phosphorylated tau 181P over a 4-week treatment period.ConclusionsJNJ-54861911 at 10 and 50 mg daily doses after 4 weeks resulted in mean CSF Aβ1–40 reductions of 67% and up to 90% in both Caucasian and Japanese patients with early stage AD, confirming results in healthy elderly adults.Trial registrationALZ1005: ClinicalTrials.gov, NCT01978548. Registered on 7 November 2013.ALZ1008: ClinicalTrials.gov, NCT02360657. Registered on 10 February 2015.Electronic supplementary materialThe online version of this article (10.1186/s13195-018-0415-6) contains supplementary material, which is available to authorized users.
Background: Atabecestat, a potent brain-penetrable inhibitor of BACE1 activity that reduces CSF amyloid beta (Aβ), was developed for oral treatment for Alzheimer's disease (AD). The long-term safety and effect of atabecestat on cognitive performance in participants with predementia AD in two phase 2 studies were assessed. Methods: In the placebo-controlled double-blind parent ALZ2002 study, participants aged 50 to 85 years were randomized (1:1:1) to placebo or atabecestat 10 or 50 mg once daily (later reduced to 5 and 25 mg) for 6 months. Participants entered ALZ2004, a 12-month treatment extension with placebo or atabecestat 10 or 25 mg, followed by an open-label phase. Safety, changes in CSF biomarker levels, brain volume, and effects on cognitive performance were assessed. Results: Of 114 participants randomized in ALZ2002, 99 (87%) completed, 90 entered the ALZ2004 double-blind phase, and 77 progressed to the open-label phase. CSF Aβ fragments and sAPPβ were reduced dose-proportionately. Decreases in whole brain and hippocampal volumes were greater in participants with mild cognitive impairment (MCI) due to AD than in preclinical AD, but were not affected by treatment. In ALZ2004, change from baseline in RBANS trended toward worse scores for atabecestat versus placebo. Elevated liver enzyme adverse events reported in 12 participants on atabecestat resulted in dosage modification and increased frequency of safety monitoring. Treatment discontinuation normalized ALT or AST in all except one with pretreatment elevation, which remained mildly elevated. No case met ALT/AST > 3× ULN and total bilirubin > 2× ULN (Hy's law).
The final model with two saturable absorption processes provided a good description of the pharmacokinetic characteristics of paliperidone after intramuscular administration of its long-acting 3-month formulation palmitate ester. In addition to the structural covariates (creatinine clearance on CL, body mass index on V, and injection volume on both absorption rates), injection site and sex were identified as covariates on k of the slow absorption process (k). Clinical trial registration numbers: NCT01559272, NCT01529515, and NCT01515423.
IntroductionThe objective of this study was to estimate longitudinal changes in disease progression (measured by Alzheimer's disease assessment scale-cognitive 11-item [ADAS-cog/11] scale) after bapineuzumab treatment and to identify covariates (demographics or baseline characteristics) contributing to the variability in disease progression rate and baseline disease status.MethodsA population-based disease progression model was developed using pooled placebo and bapineuzumab data from two phase-3 studies in APOE ε4 noncarrier and carrier Alzheimer's disease (AD) patients.ResultsA beta regression model with the Richard's function as the structural component best described ADAS-cog/11 disease progression for mild-to-moderate AD population. This analysis confirmed no effect of bapineuzumab exposure on ADAS-cog/11 progression rate, consistent with the lack of clinical efficacy observed in the statistical analysis of ADAS-cog/11 data in both studies. Assessment of covariates affecting baseline severity revealed that men had a 6% lower baseline ADAS-cog/11 score than women; patients who took two AD concomitant medications had a 19% higher (worse) baseline score; APOE ε4 noncarriers had a 5% lower baseline score; and patients who had AD for a longer duration had a higher baseline score. Furthermore, shorter AD duration, younger age, APOE ε4 carrier status, and use of two AD concomitant medications were associated with faster disease progression rates. Patients who had an ADAS-cog/11 score progression rate that was not statistically significantly different from 0 typically took no AD concomitant medications.DiscussionThe beta regression model is a sensible modeling approach to characterize cognitive decline in AD patients. The influence of bapineuzumab exposure on disease progression measured by ADAS-cog/11 was not significant.Trial RegistrationClinicalTrials.gov identifier: NCT00575055 and NCT00574132.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.